Regeneration

Heilung verletzter Nerven: Neue Ansätze

Verletzungen von Nervenfasern an Gehirn, Rückenmark und Sehnerven haben in der Regel funktionelle Verluste zur Folge, weil die Nervenfasern nicht regenerationsfähig sind. Ein Team des Lehrstuhls Zellphysiologie der Ruhr-Universität Bochum (RUB) um Prof. Dr. Dietmar Fischer hat neue Mechanismen entschlüsselt, die die Regeneration solcher Fasern ermöglichen.

Bildquelle: Colin Behrens auf Pixabay

Das könnte neue Therapieansätze bei Hirn-, Sehnerv- und Rückenmarksverletzungen eröffnen. Die Forscher berichten diese Ergebnisse in der Zeitschrift Nature Communications Biology.

Gehirn, Rückenmark und Sehnerven werden unter dem Begriff Zentrales Nervensystem zusammengefasst. Die Nervenfasern, sogenannte Axone, können nach Verletzung nicht mehr nachwachsen, sodass Schäden dauerhaft sind. „Man kann die Regenerationsfähigkeit von Nervenzellen des Zentralen Nervensystems zum Teil wiederherstellen, indem man das hemmende Protein PTEN eliminiert“, erklärt Dietmar Fischer. „Allerdings löst ein solcher sogenannter Knockout viele unterschiedliche Reaktionen in den Zellen gleichzeitig aus, die auch häufig zu Krebs führen.“ Aus diesem Grund ist eine direkte Hemmung dieses Proteins für therapeutische Ansätze beim Menschen ungeeignet. Auch ließ sich der ursprünglich postulierte Mechanismus, der der erneuten Regenerationsfähigkeit nach PTEN-Knockout zugrunde liegt, nicht durch weiterführende Studien bestätigen, sodass die Forscher nach alternativen Erklärungen suchten.

Photo
Dietmar Fischer (links) und Marco Leibinger wollen wissen, wie sich verletzte Nerven des Zentralen Nervensystems regenerieren können.

© RUB, Kramer

Bei ihren Untersuchungen dieses noch unklaren Mechanismus konnten die Bochumer Wissenschaftlerinnen und Wissenschaftler erstmals zeigen, dass durch den PTEN-Knockout ein Enzym namens Glycogensynthase-Kinase-3, kurz GSK3, stark gehemmt wird. Dieses Enzym blockiert seinerseits ein weiteres Protein namens Collapsin-Response-Mediator-Protein-2, CRMP2. Das bedeutet, der PTEN-Knockout verhindert, dass CRMP2 durch GSK3 gehemmt wird. „Wenn wir diesen zweiten Schritt direkt verhindern, die Hemmung des CRMP2 also unterbinden, können wir den regenerationsfördernden Effekt ebenfalls und spezifischer erreichen“, erklärt Dietmar Fischer. Die Aktivierung von CRMP2 selbst ist, soweit bekannt, nicht krebsauslösend.

„Wenngleich wir diese Effekte bisher erst in genetisch veränderten Mäusen und über gentherapeutische Ansätze gezeigt haben, eröffnen uns diese Erkenntnisse verschiedene Möglichkeiten zur Entwicklung von neuen medikamentösen Ansätzen“, erklärt der Neuropharmakologe. Weitere Untersuchungen an seinem Lehrstuhl beschäftigen sich mit diesen Optionen.


Quelle: Ruhr-Universität Bochum

26.08.2019

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Humangenetik

Gen spielt umfassende Rolle bei der Hirnentwicklung

Das sogenannte Plexin-A1-Gen scheint bei der Gehirnentwicklung eine breitere Rolle zu spielen als bislang angenommen. Das zeigt eine aktuelle Studie unter Federführung des Universitätsklinikums…

Photo

Langzeitfolgen von Corona

Long Covid: Forscher suchen nach Auffälligkeiten im Blut

Manche Menschen, die eine Infektion mit dem SARS-CoV-2-Virus überstanden haben, leiden im Nachhinein unter schwerwiegenden gesundheitlichen Beschwerden. Diese Langzeitfolgen werden mit dem…

Photo

Virtueller Spendenlauf

„Neurorun“ unterstützt Forschung zu Neurofibromatose

Virtuell von Erfurt nach Köln soll der „Neurorun“ führen, dessen Premiere jetzt im Rahmen der Jahrestagung der Deutschen Gesellschaft für Neurochirurgie ansteht. Beim Spendenlauf dürfen aber…

Verwandte Produkte

Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH
Newsletter abonnieren