Transkriptionsforschung

Forscher gehen Gen-Selektion der Zellen auf den Grund

Zellen müssen präzise kontrollieren, welche der vielen im Erbgut enthaltenen Gene sie nutzen.

Dies geschieht in sogenannten Transkriptionsfabriken, molekularen Ansammlungen im Zellkern. Forschende am Karlsruher Institut für Technologie (KIT), an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und am Max-Planck-Zentrum für Physik und Medizin (MPZPM) haben nun festgestellt, dass die Bildung der Transkriptionsfabriken der Kondensation von Flüssigkeiten ähnelt. Ihre Erkenntnisse können künftig zum Verständnis von Krankheitsursachen beitragen sowie die Entwicklung DNA-basierter Datenspeicher voranbringen. Die Wissenschaftler berichten in Molecular Systems Biology.

Photo
Mikroskopiebild eines Zellkerns: Transkriptionsfabriken in Orange, aktivierte Gene in Hellblau. Der Zellkern misst circa ein Zehntel der Dicke eines menschlichen Haares.

Abbildung: Arbeitsgruppen Nienhaus und Hilbert, KIT

Das Erbgut des Menschen enthält mehr als 20 000 verschiedene Gene. Allerdings greift jede Zelle nur auf einen Bruchteil der in diesem Genom gespeicherten Informationen zurück. Zellen müssen also genau kontrollieren, welche Gene sie nutzen – sonst kann es beispielsweise zur Entstehung von Krebs oder auch zu Störungen im embryonalen Wachstum kommen. Eine zentrale Rolle bei der Auswahl der aktiven Gene kommt sogenannten Transkriptionsfabriken zu. „Bei diesen Fabriken handelt es sich um molekulare Ansammlungen im Zellkern, welche die korrekte Auswahl der aktiven Gene und das Auslesen ihrer Sequenz an einem zentralen Ort vereinen“, erklärt Lennart Hilbert, Juniorprofessor für Systembiologie/Bioinformatik am Zoologischen Institut (ZOO) und Arbeitsgruppenleiter am Institut für Biologische und Chemische Systeme – Biologische Informationsprozessierung (IBCS-BIP) des KIT.

Wie Transkriptionsfabriken innerhalb von wenigen Sekunden aufgebaut und gezielt in Betrieb genommen werden, beschäftigt Zell- und Molekularbiologen seit Jahrzehnten. Ergebnisse der vergangenen Jahre deuten auf die Relevanz von Vorgängen hin, die zuvor nur von industriellen und technischen Polymer- und Flüssigmaterialien bekannt waren. Aktuell untersucht die Forschung besonders die Phasentrennung als einen zentralen Mechanismus. Im Alltag zeigt sich die Phasentrennung beispielsweise bei der Trennung von Öl und Wasser. Bisher war jedoch nicht geklärt, wie genau die Phasentrennung zum Aufbau von Transkriptionsfabriken in lebenden Zellen beiträgt.

Forschende am Institut für Biologische und Chemische Systeme (IBCS), am Zoologischen Institut (ZOO), am Institut für Angewandte Physik (APH) und am Institut für Nanotechnologie (INT) des KIT haben zusammen mit Wissenschaftlern an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), am Max-Planck-Zentrum für Physik und Medizin (MPZPM) in Erlangen und an der University of Illinois at Urbana-Champaign/USA neue Erkenntnisse zur Bildung von Transkriptionsfabriken gewonnen: Sie geschieht ähnlich wie die Kondensation von Flüssigkeiten. Erstautoren der neuen Publikation sind Agnieszka Pancholi vom IBCS-BIP und ZOO des KIT sowie Tim Klingberg von der FAU und vom MPZPM. In ihrer Publikation zeigen die Forschenden, dass die Kondensation bei der Bildung von Transkriptionsfabriken dem Beschlagen einer Brille oder einer Fensterscheibe ähnelt: Flüssigkeit schlägt sich nur in Anwesenheit einer empfänglichen Oberfläche nieder, dann allerdings sehr schnell. In der lebenden Zelle dienen speziell markierte Bereiche des Genoms als Kondensationsoberfläche. Die mit Flüssigkeit umhüllten Bereiche erlauben das Anhaften relevanter Gensequenzen sowie zusätzlicher Moleküle, welche die anhaftenden Gene schließlich aktivieren. Diese Erkenntnisse wurden im Rahmen einer interdisziplinären Zusammenarbeit erreicht. So beobachteten die Forschenden Zebrafischembryonen mit modernsten Lichtmikroskopen, die im Team von Professor Gerd Ulrich Nienhaus am APH entwickelt wurden. Diese Beobachtungen wurden verbunden mit Computersimulationen am Lehrstuhl für Mathematik in den Lebenswissenschaften an der FAU und am MPZPM, den Professor Vasily Zaburdaev leitet. Die Kombination von Beobachtungen und Simulationen macht den Kondensationsvorgang nachvollziehbar und erklärt, wie lebende Zellen schnell und zuverlässig Transkriptionsfabriken aufbauen können.

Das neue Verständnis kondensierter Flüssigkeiten in lebenden Zellen hat in den vergangenen Jahren grundsätzlich neue Ansätze zur Therapie von Krebs und Erkrankungen des Nervensystems geliefert. Diese Ansätze werden bereits von erst kürzlich gegründeten Unternehmen verfolgt, um neue Medikamente zu entwickeln. Andere Forschungsarbeiten befassen sich mit dem Einsatz von DNA-Sequenzen als digitale Datenspeicher. Die prinzipielle Machbarkeit DNA-basierter Datenspeicher wurde inzwischen von mehreren Arbeitsgruppen demonstriert. Informationen zuverlässig in solchen DNA-Speichermedien zu speichern und auszulesen, stellt jedoch noch eine Herausforderung dar. „Unsere Forschung zeigt, wie die biologische Zelle solche Vorgänge schnell und gleichzeitig zuverlässig organisiert. Die von uns erstellten Computersimulationen und Funktionskonzepte lassen sich direkt auf künstliche DNA-Systeme übertragen und können deren Design unterstützen“, sagt Hilbert.


Quelle: Karlsruher Institut für Technologie

02.11.2021

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Gen-Sequenzierung

Brustkrebs: DNA von über 113.000 Frauen hilft bei Suche nach Risiko-Genen

Bei Verdacht auf familiären Brustkrebs sind Gentests ein fester Bestandteil der medizinischen Praxis. Lange Zeit haben Tests jedoch nur eine begrenzte Anzahl von Genen berücksichtigt, von denen…

Photo

Genregulation in der DNA entschlüsselt

KI knackt Rätsel genetischer Codes

Mit Hilfe künstlicher Intelligenz (KI) ist es einem deutsch-amerikanischen Wissenschaftsteam gelungen, komplexe Anweisungen der Genregulation in der DNA zu entschlüsseln. Sie trainierten ihr…

Photo

Epigenetik

Forscher entdecken neue Ursache für Gen-Defekte

Ein internationales Forschungsteam hat eine seltene genetische Erkrankung entdeckt, die sich in schweren Fehlbildungen der Gliedmaßen äußert. Wie Forschende der Charité – Universitätsmedizin…

Verwandte Produkte

MolGen – PurePrep 96

Extraction

MolGen – PurePrep 96

MolGen
Lifotronic – Nucleic Acid Extraction Kit

Extraction

Lifotronic – Nucleic Acid Extraction Kit

Lifotronic Technology Co., Ltd
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG