News • Doppelhelix mit Potenzial

DNA: viel mehr als nur ein Speicher für Gen-Infos

DNAzyme sind hochpräzise Biokatalysatoren, die gezielt ungewollte RNA-Moleküle zerstören. Für den medizinischen Einsatz gibt es aber noch eine große Hürde.

Ein Forschungsteam der Heinrich-Heine-Universität Düsseldorf (HHU) hat zusammen mit dem Forschungszentrum Jülich (FZJ), der Universität Bonn und der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) die genaue Funktionsweise der DNAzyme in Echtzeit untersucht. Diese wichtigen Grundlagenerkenntnisse hin zur Anwendung stellen sie in der Zeitschrift Nature vor

DNAzyme – ein Kunstwort aus DNA und Enzym – sind katalytisch aktive DNA-Sequenzen. Sie bestehen aus einem katalytischen Kern aus rund 15 Nukleinsäuren, an dem rechts und links kurze Bindearme aus rund zehn Nukleinsäuren sitzen. Während die Sequenz des Kerns vorgegeben ist, lassen sich die Bindearme gezielt auf nahezu jede RNA-Zielsequenz anpassen.

Im Visier sind ungewollte RNA-Moleküle von Viren, Krebs- oder geschädigten Nervenzellen wie bei Parkinson, die mit den DNAzymen angegriffen und zerstört werden sollen. Dafür nutzt man solche Bindungssequenzen, die einer Folge von Nukleotiden auf dem gesuchten RNA-Molekül entsprechen. Genau an der Stelle dockt das DNAzym an und der Kern zerschneidet das RNA-Molekül, dessen Bruchstücke anschließend schnell in der Zelle abgebaut werden. Die Bindearme sind leicht und schnell austauschbar. 

Der therapeutische Nutzen ist augenfällig: Hochpräzise kann eine ungewollte RNA zerstört werden, während andere nützliche RNA-Stränge in einer Zelle unangetastet bleiben. Bei einigen Viren wie SARS-CoV-2 und Ebola ist das Erbgut auf einem RNA-Molekül kodiert. Krebs- wie auch gesunde Zellen nutzen sogenannte Messenger-RNA (mRNA), um Baupläne für Proteine von deren DNA zu kopieren und in die Molekülfabriken zu transferieren. Bei Krebszellen ist die mRNA-Sequenz gegenüber gesunden Zellen oft leicht verändert oder in unterschiedlichen Mengen vorhanden, so dass DNAzyme gezielt Krebszellen angreifen und andere Zellen schonen können. „Was in der Theorie hervorragend klingt und schon vor 20 Jahren vorgeschlagen wurde, funktioniert in der medizinischen Praxis so leider nicht“, schränkt Dr. Manuel Etzkorn von der HHU und Letztautor der Studie, ein: „Im Reagenzglas zerstören die DNAzyme RNA-Moleküle sehr effektiv, aber in einer Zelle geschieht dies kaum. Es muss einen konkurrierenden Prozess geben, der die DNAzyme hindert. Ohne ein grundlegendes Verständnis ihrer Funktionsweise wird es aber sehr schwierig, verbesserte DNAzyme-Varianten zu entwickeln, welche sich in der Zelle durchsetzen. Unsere Einblicke ändern diese festgefahrene Situation jetzt.“ 

In ihrer Studie wollten die Wissenschaftler, darunter Prof. Dr. Ingrid Span, Professorin für Bioanorganische Chemie an der FAU, verstehen, wie das Gesamtsystem dynamisch funktioniert, welche Schritte beim Binden und Schneiden ablaufen und welche Kofaktoren die Reaktion unterstützen. Das Forschungsteam beobachtete die Vorgänge mit atomarer Auflösung und teilweise in Echtzeit mithilfe der hochauflösenden Kernresonanzspektroskopie (NMR). Damit konnten die Forscher die dreidimensionale Atomanordnung darstellen, die das DNAzym annimmt, um an die RNA zu binden und diese zu zerteilen: Der Kern wickelt sich hierbei in sehr effektiver Weise um den RNA-Strang und trennt diesen in mehreren Zwischenschritten in zwei Teile auf. Nach dem Schnitt gibt das DNAzym die Stücke frei und kann erneut ansetzen. 

Jan Borggräfe, Doktorand an der HHU und Erstautor der Studie, erläutert, warum die DNAzyme in der Zelle nur schlecht funktionieren: „Wir haben festgestellt, dass Magnesium als entscheidender Kofaktor verschiedene essenzielle Rollen im Mechanismus spielt, aber relativ schlecht und nur kurz an das DNAzym bindet. In der Zelle gibt es andere Zellkomponenten mit höherer Affinität für Magnesium, die es also quasi dem DNAzym ‚wegschnappen‘.“ 

Als nächste Schritte stehen Strukturuntersuchungen in Zellkulturen und Organoiden an. Ziel für den medizinischen Einsatz ist es, die Magnesium-Affinität der DNAzyme durch gezielte Modifikationen zu erhöhen, um ihre Aktivität im biologischen Gewebe zu verbessern. 


Quelle: Friedrich-Alexander-Universität Erlangen-Nürnberg

26.12.2021

Verwandte Artikel

Photo

News • Algorithmus für Genvarianten-Assoziation

Deep Learning deckt Risiko für seltene Erkrankungen auf

Forschende stellen einen auf Deep Learning basierenden Algorithmus vor, der die Auswirkungen von Erbgut-Varianten auf das Risiko für bestimmte, seltene Erkrankungen vorhersagen kann.

Photo

News • Genomweite Assoziationsstudie (GWAS)

Diabetes Typ 2: Studie deckt genetische Risiko-Marker auf

Um das Risiko für Typ-2-Diabetes besser vorherzusagen, haben Wissenschaftler Millionen genetischer Daten ausgewertet. Dabei stießen sie auf hunderte DNA-Loci, die mit Komplikationen zusamenhängen.

Photo

News • Neue Ansätze für die medizinische Diagnostik

PET-Bildgebung macht das Genom sichtbar

Forscher der Universität Luzern stellen ein neu entwickeltes Verfahren vor, das PET-Bildgebung für die Darstellung des menschlichen Erbgutes (Genom) nutzt.

Verwandte Produkte

Newsletter abonnieren