Photomicrograph of a cell co-culture of pro-metastatic primary colon cancer...
Photomicrograph of a cell co-culture of pro-metastatic primary colon cancer PAME (purple) mixed with induced migratory PIM (green).

Credit: Ariel Ruiz i Altaba

News • Cancer research

Origins of metastasis unraveled

For a long time, the origin of metastasis remained obscure. Now, scientists at the University of Geneva (UNIGE) have discovered some of the mechanisms these cells arise.

Metastatic cells occur in many forms of cancer. They originate in primary tumors and then break away and migrate. They travel through the tissues surrounding them, through blood vessels or lymphatic channels. Along the way, they may attach to one or more organs—such as the lungs, brain, bones or liver—and form new tumors also called metastases. This spread reduces patients' chances of recovery.

Scientists at the University of Geneva (UNIGE) have discovered some of the mechanisms by which these cells arise. This is due to cells that have narrowly escaped cell death (apoptosis) following a chemotherapeutic treatment. Those cells reprogram themselves to acquire metastatic skills. Thanks to this study, these cells—called PAME by the researchers—now appear as new therapeutic targets. 

Previous studies have identified metastatic cells during migration. It is also known that certain treatments can induce them. However, the precise mechanisms of their development remain a mystery. "We don't know why, at a given moment, certain cells separate from the primary tumor," explains Ariel Ruiz i Altaba, a Full Professor in the Department of Genetic Medicine and Development at the UNIGE Faculty of Medicine. "The phenomenon is difficult to analyze because, before they migrate, there is nothing to distinguish future metastatic cells, or pro-metastatic cells, from other cells within the tumor."

Cells that should have died

Professor Ruiz i Altaba's team—composed of two postdocs for this study, Arwen Conod (first author) and Marianna Silvano—has now provided some answers. Thanks to recent research, these UNIGE scientists have discovered that the experience of imminent death within the primary tumor pushes certain cells to acquire pro-metastatic states. This near-death experience occurs in particular in the context of certain treatments aimed at depriving cancer cells of energy or oxygen. The team observed that these cells, which should have died, reprogram themselves and then present a high metastatic risk. These cells are called PAME for "post-apoptotic pro-metastatic cells."

A storm of cytokines

To reach these conclusions, the UNIGE team used tumor samples taken from two colon cancer patients. Tumor cells from these samples were then transplanted into mice, where they grew and formed new tumors. These cells were subjected to an imminent death experience causing endoplasmic reticulum stress similar to that caused by certain chemotherapeutic drugs. This allowed the development of PAME cells.

The scientists also discovered that PAMEs trigger a storm of cytokines—proteins and other factors that ensure cell-to-cell communication—inducing adjacent cells to become PAME-induced migratory cells (PIMS). These PIMs then associate with PAMEs and help them migrate to form metastases.

The present results open up promising new prospects for therapeutic management, including the prevention of the development of pro-metastatic fields generated by certain treatments. 

"Currently, one of the main criteria when defining a treatment is tumor shrinkage. Thanks to our study, PAME cells now appear as potential therapeutic and metastasis prevention targets to be taken into account,"  concludes Professor Ruiz i Altaba.

The study was published in the journal Cell Reports.

Source: University of Geneva                                                                       

10.03.2022

Read all latest stories

Related articles

Photo

News • Oncology

Anti-inflammation approach shows promise for preventing cancer metastasis

An anti-inflammatory drug called ketorolac, given before surgery, can promote long-term survival in animal models of cancer metastasis, a team of scientists has found. Furthermore, so-called…

Photo

News • Histotripsy

Tumors partially destroyed with ultrasound don't come back

Noninvasive sound technology breaks down liver tumors in rats, kills cancer cells and spurs the immune system to prevent further spread.

Photo

News • Oncology

Biodegradable hydrogel boosts immune system’s attack on cancers

A new biodegradable gel improves the immune system’s ability to keep cancer at bay after tumors are surgically removed.

Related products

Canon – Alphenix 4D CT

Multi-Modality Suites

Canon – Alphenix 4D CT

Canon Medical Systems Europe B.V.
Canon - Aquilion Exceed LB

Oncology CT

Canon - Aquilion Exceed LB

Canon Medical Systems Europe B.V.
Canon – Aquilion LB

Oncology CT

Canon – Aquilion LB

Canon Medical Systems Europe B.V.
Canon – Vitrea Advanced Visualization

Reading

Canon – Vitrea Advanced Visualization

Canon Medical Systems Europe B.V.
Siemens Healthineers – Somatom Edge Plus

Oncology CT

Siemens Healthineers – Somatom Edge Plus

Siemens Healthineers
Subscribe to Newsletter