Cancer

New molecular markers for high-risk neuroblastoma

Researchers from the University of Cologne and NEO New Oncology AG today jointly published in Nature* the findings of an extensive genomic analysis of neuroblastoma, a malignant pediatric tumor of the sympathetic nervous system. In the most aggressive forms of this tumor, the researchers identified previously unknown genomic alterations leading to up-regulation of the telomerase reverse transcriptase gene (TERT). Overexpression of TERT is often associated with cancers and tumor formation. These findings may help to improve tumor diagnostics and prognosis, and may also lead to the development of novel therapeutic options for the most aggressive subgroup of this deadly pediatric disease.

Dr. Andreas Jenne, CEO of NEO New Oncology AG
Dr. Andreas Jenne, CEO of NEO New Oncology AG
Source: Dr. Andreas Jenne, CEO of Oncology AG

In neuroblastoma, the most common cancer in infancy, half of the tumors either regress spontaneously or can be cured by limited therapy, while the other half is high-risk neuroblastoma, a tumor with a very unfavorable prognosis and resistance even to intensive treatment.

So far, only a limited number of molecular markers that define high-risk neuroblastoma at a genomic level have been described, among them amplifications of the MYCN oncogene and mutations of the transcriptional regulator ATRX. By genomically analyzing more than 200 tumor samples, the authors of the study discovered genomic rearrangements close to the telomerase reverse transcriptase gene (TERT) that occur in approximately one quarter of high-risk neuroblastoma patients and clinically correlate with a particularly poor outcome. Both MYCN amplification and TERT rearrangements massively increased expression of TERT as well as enzymatic telomerase activity. Additionally, it was shown that high-risk tumors, even without any genomic alterations in MYCN or TERT, were prone to exhibiting a lengthening of telomeres.

Taken together, these findings suggest that most high-risk neuroblastomas are affected by either TERT rearrangements, MYCN amplification, or ATRX mutations, all of which lead to telomere lengthening, thereby providing a molecular, mechanistic definition of this neuroblastoma subtype. By contrast, low-risk tumors are characterized by the absence of such alterations and by low TERT expression levels, which presumably renders the tumors unable to attain immortal proliferation.

“The finding that telomere lengthening is the basic principle of high-risk neuroblastoma fundamentally advances our understanding of the molecular pathogenesis of this pediatric malignancy. Our discovery provides an unprecedented opportunity to improve diagnostics and treatment of children suffering from this deadly cancer,” said Prof. Matthias Fischer, Department of Pediatric Oncology, University Children's Hospital Cologne.

“Molecular classification of neuroblastoma has been difficult in the past, as many different genomic alterations may play a role. Only now do we have the technological means to perform genomic tumor analysis at a level suitable for optimal clinical diagnostics. The new genomic markers will help clinicians to better classify neuroblastoma,” said Dr. Martin Peifer, lead author of the study and one of the founders of NEO New Oncology AG.

“The publication underlines NEO New Oncology AG’s commitment to providing the most comprehensive genomic diagnostics for all cancer patients, which is a pre-requisite for selecting the best available treatment. We are very happy that our NEO technology has contributed to this leap forward in understanding the unique genomic aspects of this devastating disease,” added Dr. Andreas Jenne, CEO of NEO New Oncology AG.


Source: NEO New Oncology AG

15.10.2015

Read all latest stories

Related articles

Photo

Switching sides

How cancer cells 'brainwash' their foes

It doesn’t often happen that army generals switch sides in the middle of a war, but when cancer is attacking, it may cause even a gene that acts as the body’s master defender to change…

Photo

High throughput screening

Tumor-like spheres to help discover smarter cancer drugs

Cancer is a disease often driven by mutations in genes. As researchers learn more about these genes, and the proteins they code for, they are seeking smarter drugs to target them. The ultimate goal…

Photo

Datasets

Benefits from The Cancer Genome Atlas

Last year, scientists at the University of California San Francisco (UCSF) revealed that by measuring the proportion of both immune and cancerous cells in tumours, or ‘tumour purity,’ clinicians…

Related products

Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Agena Bioscience - MassARRAY Colon Panel

Amplification/Detection

Agena Bioscience - MassARRAY Colon Panel

Agena Bioscience GmbH
Eppendorf – BioSpectrometer fluroescence

Research Use Only (RUO)

Eppendorf – BioSpectrometer fluroescence

Eppendorf AG
Eppendorf – μCuvette G1.0

Research Use Only (RUO)

Eppendorf – μCuvette G1.0

Eppendorf AG
Orion Diagnostica Oy – Orion GenRead

Amplification

Orion Diagnostica Oy – Orion GenRead

Orion Diagnostics Oy