Representative case of a 47-year-old female patient suffering from a brain...
Representative case of a 47-year-old female patient suffering from a brain metastasis from breast cancer that was correctly classified by the 1D-CNN and CMRO2 features but misclassified as glioblastoma by the radiologists. Contrast-enhanced (CE) T1w and FLAIR MRI data combined with the quantitative maps of apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) among others were used for human reading by two board-certified radiologists in consensus. MRI biomarker maps for oxygen metabolism including oxygen extraction fraction (OEF), the cerebral metabolic rate of oxygen (CMRO2), capillary oxygen tension (capiPO2), and mitochondrial oxygen tension (mitoPO2), respectively, of the patient are presented on the right-hand part of the Figure.

Image source: Stadlbauer et al., Metabolites 2022 (CC BY 4.0)

News • Primary tumor or metastasis?

Deep learning and radiomics for precise differentiation in brain tumors

The distinction between primary tumors and metastases can be made quickly and accurately in brain tumors using radiomics and deep learning algorithms. This is the key message of a study from Karl Landsteiner University of Health Sciences (KL Krems).

The study, which was now published in Metabolites, shows that magnetic resonance-based radiological data of tumor O2 metabolism provide an excellent basis for discrimination using neural networks. This combination of so-called "oxygen metabolic radiomics" with analyses by special artificial intelligence was clearly superior to evaluations by human experts in all essential criteria. This is all the more impressive because essential oxygen values did not differ significantly between tumor types – and neuronal networks were nevertheless able to make clear distinctions on the basis of these values.

Glioblastoma, a primary tumor, and brain metastases are the most common types of brain tumors in adults. Their treatment must be fundamentally different, and a rapid and clear diagnosis therefore influences clinical outcome. However, their differentiation is difficult, as they are hardly distinguishable on classical magnetic resonance (MR) images. This is different with so-called physio-metabolic MR, which can record metabolic processes in tumor tissue. However, this provides such large amounts of data that its use in routine diagnostics would require evaluations by artificial intelligence. Their reliability is now being demonstrated by a team led by Prof. Andreas Stadlbauer of KL Krems using a specially developed deep learning algorithm and MR-based data on the O2 metabolism of the two tumor types. 

"In fact, our approach succeeded in achieving better distinctions between the tumor types than human experts were able to achieve in comparison," said Prof. Stadlbauer, summarizing the results of the international study. The medical physicist at the Central Institute for Medical Radiology Diagnostics at St. Pölten University Hospital, teaching and research site of KL Krems continues: "In all important differentiation criteria such as accuracy, sensitivity, specificity and precision, the evaluation of MR-based oxygen data by our special neural network was superior to radiologists. This method was also better than the human evaluations in statistical evaluations such as the F-values and the AUROC."

Interestingly, neither the mean nor the median of these two parameters differed significantly between the two tumor types – but nevertheless, our CNN managed to clearly differentiate the two tumor types

Andreas Stadlbauer

The measurements were based on a so-called "Convolutional Neural Network" (CNN) specially developed by the team. This is a special form of artificial neural network that is designed for machine learning and the processing of image or audio data and mimics parts of biological processes. As part of the study, the CNN was then trained using tumor data from the extensive database at St. Pölten University Hospital and subsequently used to analyze MR-based oxygen levels of new patients. 

The oxygen values collected during the study included cerebral oxygen turnover (CMRO2) and mitochondrial oxygen saturation (mitoPO2), which provides information about cellular energy turnover. "Interestingly," said Prof. Stadlbauer, "neither the mean nor the median of these two parameters differed significantly between the two tumor types – but nevertheless, our CNN managed to clearly differentiate the two tumor types." 

The study shows the great diagnostic potential of combining the two methods. In fact, however, radiological data of O2 metabolism are still only used to a very limited extent in everyday clinical practice. Prof. Stadlbauer and his team would like to change this and are therefore already planning a more extensive study that will not only confirm the data now collected, but will also use methods that are even closer to clinical routine. Prof. Stadlbauer explains: "In the current study, some manual steps were still necessary to prepare the data analysis. This is too time-consuming for clinical routine and also limits comparability between different institutions. We therefore plan to use CNN in this phase as well." 


Source: Karl Landsteiner University of Health Sciences

22.01.2023

Read all latest stories

Related articles

Photo

News • Deep learning applied to MRI scans

Glioblastoma: Using AI to improve prognosis and treatment

In the first study of its kind in cancer, researchers have applied artificial intelligence to measure the amount of muscle in patients with brain tumours to help improve prognosis and treatment.

Photo

Article •

Oral vaccination against pancreatic tumours

The world’s first gene cancer therapy study of an innovative oral vaccine is underway at the Surgical Clinic of Heidelberg University Hospital.

Photo

Article • AI provides prognostic information

Next-generation deep learning models predict cancer survival

Deaths from cancer are currently estimated at 10 million each year worldwide. Conventional cancer staging systems aim to categorize patients into different groups with distinct outcomes. ‘However,…

Related products

Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon · Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
Vantage Elan NX Edition

1.5 Tesla

Canon · Vantage Elan NX Edition

Canon Medical Systems Europe B.V.
CT Image Reconstruction

Artificial Intelligence

Canon · CT Image Reconstruction

Canon Medical Systems Europe B.V.
HIT Automation Platform

Artificial Intelligence

Canon · HIT Automation Platform

Canon Medical Systems Europe B.V.
Subscribe to Newsletter