Gas embolotherapy scenario
Gas embolotherapy scenario: After the droplets were injected intravenously with or without therapeutic agents (e.g., chemotherapeutics or genes) and subsequently transported to the tumor microcirculation by blood flow, bubble formation was induced by ADV on demand.
Source: Dui Qin/Xi’an Jiaotong University

Gas embolotherapy

Blowing bubbles for cancer treatment

Recently, scientists have explored another version of embolization, called gas embolotherapy. During this process, the blood supply is cut off using acoustic droplet vaporization (ADV), which uses microscopic gas bubbles induced by exposure to ultrasonic waves. A team of researchers from China and France has discovered that these bubbles could also be used as potential drug delivery systems.

“We have found that gas embolotherapy has great potential to not only starve tumors by shutting off blood flow, but also to be used as a source of targeted drug delivery,” said Yi Feng, associate professor of biomedical engineering at Xi'an Jiaotong University and first co-author of the paper. 

In gas embolotherapy, researchers inject droplets, from tens to hundreds of nanometers in diameter, into feeder vessels surrounding the tumor. Microscopic gas bubbles are then formed from the droplets through ultrasound, growing large enough to block the feeder vessels (e.g., arterioles). ADV is the process of transforming droplets into bubbles. In previous work, the researchers expected to use ADV to starve the tumor by blocking blood flow in the arterioles. To their surprise, they found that the bubbles not only blocked the arterioles, but other gas bubbles made their way into the capillaries, resulting in vessel rupture and more leaky microvasculature

One-two punch for cancer treatment

In their latest work, gas embolotherapy through ADV was performed to further explore the dynamics of the bubbles inside the capillaries. Testing was conducted ex vivo on rat tissue that attaches the intestines to the abdominal wall. It involved bubble formation in droplets of dodecafluoropentane containing a bovine serum which were injected into the blood flow.

Produced in the dodecafluoropentane through ultrasound, the bubbles accumulated, sometimes merging, as they lodged themselves in the capillaries. At one point, the researchers observed a local vessel invagination (a pouchlike cavity), which they believe was caused by the interaction between the bubble and vessel and led to a capillary rupture.

Their findings could provide a one-two punch for cancer treatment -- shutting off blood flow from the arterioles and delivering drugs through the capillaries. In addition, chemotherapy drugs could be kept localized for longer periods of time because blood flow has been shut down, reducing drug dosage.

In cancer therapy research, scientists are always interested in answering two questions: how to kill the cancer effectively and how to reduce the side effects of chemotherapeutic drugs.

Mingxi Wan

“In cancer therapy research, scientists are always interested in answering two questions: how to kill the cancer effectively and how to reduce the side effects of chemotherapeutic drugs,” said Mingxi Wan, professor of biomedical engineering also at Xi'an Jiaotong University and corresponding author of the paper. “We have found that gas embolotherapy has the potential to successfully address both of these areas.”

With an ultrasound imaging method in place, according to Feng, gas embolotherapy has a good chance of becoming a standard practice. Wan and Feng’s team is working with another group of researchers in the same lab, and such an imaging system is being built to apply the ADV gas embolotherapy method in rats.


Source: American Institute of Physics (AIP)

06.06.2018

Read all latest stories

Related articles

Advanced materials

Nanocarriers open up to cancer

Nanosystems that deliver anticancer drugs or imaging materials to tumours are showing significant progress, particularly those that respond to tumour-related stimuli, according to a review published…

Immunotherapy

Toward an “ultra-personalized” therapy for melanoma

With new immunotherapy treatments for melanoma, recovery rates have risen dramatically – in some cases to around 50%. But they could be much higher. A new study led by researchers at the Weizmann…

Tumor research

microRNAs predict recurrence risk of head and neck cancer

A new method predicts the course of HPV-negative head and neck cancer after radiation chemotherapy. According to a recent article in the journal ‘Clinical Cancer Research’, five microRNAs…

Related products

Research use only (RUO)

Eppendorf - Mastercycler nexus X2

Eppendorf AG

Research use only (RUO)

SARSTEDT - Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG

Research use only (RUO)

Shimadzu - CLAM-2000

Shimadzu Europa GmbH