SARS-CoV-2 Protein
Struktur des SARS-CoV-2-Proteins NSP1 (blau) im Komplex mit einem Wirts-Ribosom (grau). NSP1 blockiert das Ablesen von Wirts-mRNA in vom Virus befallenen Zellen.

QUelle: Seán O'Donoghue / Garvan Institute

Covid-19-Proteine

Maschinelles Lernen enthüllt Taktiken des SARS-CoV-2-Virus

Die Proteine des SARS-Cov-2-Virus spielen eine Schlüsselrolle bei der Fähigkeit des Virus, die menschliche Immunabwehr auszutricksen und sich in Patientenzellen zu vermehren. Ein internationales Forschungsteam unter Beteiligung der Technischen Universität München (TUM) hat nun den bislang umfassendsten und detailreichsten Überblick aller weltweit verfügbaren 3D-Strukturen der Virusproteine zusammengetragen. Bei der Auswertung mit Methoden der künstlichen Intelligenz kamen überraschende Erkenntnisse zutage.

Wie gelingt es dem SARS-CoV-2-Virus, sich der Immunabwehr zu entziehen und sich in den Zellen von Patienten zu replizieren? Um diese Frage zu klären, hat ein internationales Forschungsteam den bislang umfassendsten Überblick aller bisher verfügbaren Analysen der exakten dreidimensionalen Form der SARS-CoV-2-Proteine – darunter auch das bekannte Spike-Protein – zusammengetragen.

Um diese Übersicht zu zusammenzustellen, verwendete das Team Hochdurchsatz-Maschinenlernen. Dieser Ansatz ermöglicht es, basierend auf Analysen verwandter Proteine, strukturelle Zustände von Coronavirus-Proteinen vorherzusagen. Inzwischen besteht die Datenbank aus 2.060 3D-Modellen mit atomarer Auflösung. Auf der Website Aquaria-COVID sind alle Strukturmodelle frei verfügbar.

„Dies bietet einen beispiellosen Detailreichtum, der Forschenden helfen wird, die molekularen Mechanismen der COVID-19-Infektion besser zu verstehen und Therapien zur Bekämpfung der Pandemie zu entwickeln, beispielsweise indem sie potenzielle neue Angriffspunkte für zukünftige Behandlungen oder Impfstoffe identifizieren“, sagt Burkhard Rost, Inhaber des Lehrstuhls für Bioinformatik an der TU München.

Strukturelle Landkarte erschließt das zusammengetragene Wissen

In einem zweiten Teil der Studie wurde ein komplementärer Ansatz verwendet, der als Human-in-the-Loop Machine Learning bekannt ist. Hier wurde eine neuartige, visuelle Schnittstelle erzeugt, die alles zusammenfasst, was derzeit über die dreidimensionale Form von SARS-CoV-2-Proteinen bekannt ist – und was nicht.

Forschende können die visuelle Schnittstelle auch als Navigationshilfe verwenden, um für spezifische Forschungsfragen geeignete Strukturmodelle zu finden. Die Arbeit mit den Modellen hat bereits einige wichtige Hinweise darauf gegeben, wie Coronaviren es schaffen, das Kommando in unseren Zellen übernehmen.

Dieses Protein ist „E-Protein“ oder „Hüllprotein“ bekannt. Wie man an...
Dieses Protein ist „E-Protein“ oder „Hüllprotein“ bekannt. Wie man an der Struktur leicht erkennen kann, bildet das Protein einen Kanal in der Virushülle. Dieser Kanal ermöglicht den Austausch von Ionen zwischen dem reifen Viruskapsid und der Umgebung.

Quelle: Seán O'Donoghue / Garvan Institute

Wie Coronaviren das Kommando in unseren Zellen übernehmen

Mithilfe der Machine-Learning-Algorithmen identifizierte das Team drei Coronavirus-Proteine (NSP3, NSP13 und NSP16), die menschliche Proteine „nachahmen“ und den Wirtszellen erfolgreich vorgaukeln, sie seien körpereigene Proteine, die im besten Interesse der Zelle arbeiten.

Die Modellierung ergab auch fünf Coronavirus-Proteine (NSP1, NSP3, Spike-Glykoprotein, Hüllprotein und ORF9b-Protein), die Prozesse in menschlichen Zellen „zweckentfremden“ oder stören. Auf diese Weise gelingt es dem Virus, die Kontrolle zu übernehmen, seinen Lebenszyklus zu vervollständigen und sich auszubreiten.

Wie funktioniert das Virus?

„Bei der Analyse dieser Strukturmodelle haben wir außerdem neue Hinweise darauf gefunden, wie das Virus sein eigenes Genom kopiert – das ist der zentrale Prozess, der es dem Virus ermöglicht, sich bei Infizierten schnell auszubreiten“, sagt Burkhard Rost. „Die Erkenntnisse aus unserer Studie bringen uns näher an das Verständnis, wie das Virus funktioniert und was wir tun können, um es zu stoppen.“

„Je länger das Virus zirkuliert, desto größer ist die Gefahr, dass es mutiert und neue Varianten wie den Delta-Stamm bildet“, sagt Sean O’Donoghue, Erstautor der Studie und Professor am Garvan Institute in Sydney. „Unsere Ressource wird Forschern helfen zu verstehen, wie sich neue Virusstämme voneinander unterscheiden – ein Puzzleteil, von dem wir hoffen, dass es beim Bekämpfen neu auftauchender Varianten hilft.“


Quelle: Technische Universität München

16.09.2021

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Datenverarbeitung und KI

Hochleistungs-Rechner für die Covid-Forschung

Die Erforschung von Covid-19 ist mit der Analyse und Verarbeitung enormer Datenmengen verbunden, etwa bei der Genom-Sequenzierung zur Identifizierung von Hochrisikopatienten und Entwicklung gezielter…

Photo

Blutkrebs

Maschinelles Lernen hilft bei der Leukämie-Diagnose

Forschende der Universität Bonn zeigen, wie die Künstliche Intelligenz die Auswertung von Blutanalysedaten verbessert.

Photo

Aerosole

Coronavirus: Tröpfchen halten länger als gedacht

Winzige, mit Viren beladene Tröpfchen verschwinden nach dem Ausatmen langsamer als bisherige Modelle vermuten ließen. Experimente und Simulationen der TU Wien können das nun erklären.

Verwandte Produkte

Agfa - Smart XR

Accessories/ Complementary Systems

Agfa - Smart XR

Agfa HealthCare
Beckman Coulter – Access Interleukin-6 (IL-6)

Immunoassays

Beckman Coulter – Access Interleukin-6 (IL-6)

Beckman Coulter, Inc.
Beckman Coulter – SARS-CoV-2 Assays

Immunoassays

Beckman Coulter – SARS-CoV-2 Assays

Beckman Coulter, Inc.
Canon - Advanced Intelligent Clear-IQ Engine for CT

Artificial Intelligence

Canon - Advanced Intelligent Clear-IQ Engine for CT

Canon Medical Systems Europe B.V.
Newsletter abonnieren