News • Wie Künstliche Intelligenz ihre Entscheidungen erklären kann

KI-Diagnostik: Abschied von der 'Black Box'

Wenn ein Algorithmus in einer Gewebeprobe einen Tumor ausmacht, verrät er bislang nicht, wie er zu diesem Ergebnis gekommen ist. Das ist wenig vertrauenswürdig. Bochumer Forschende verfolgen daher einen neuen Ansatz.

Photo
Von links: Stephanie Schörner, Axel Mosig und David Schuhmacher haben die scheinbar unvereinbare induktive Vorgehensweise von maschinellem Lernen mit deduktiver Logik zusammengebracht.

© RUB, Marquard

Künstliche Intelligenz (KI) kann so trainiert werden, dass sie erkennt, ob ein Gewebebild Tumor enthält. Wie sie ihre Entscheidung trifft, bleibt bislang jedoch verborgen. Ein Team des Forschungszentrums für Protein-Diagnostik, kurz PRODI, der Ruhr-Universität Bochum entwickelt einen neuen Ansatz: Mit ihm wird die Entscheidung einer KI erklärbar und somit vertrauenswürdig. Den Ansatz beschreiben die Forschenden um Prof. Dr. Axel Mosig in der Zeitschrift „Medical Image Analysis“

Für die Arbeiten kooperierte Bioinformatiker Axel Mosig mit Prof. Dr. Andrea Tannapfel, Leiterin des Instituts für Pathologie, der Onkologin Prof. Dr. Anke Reinacher-Schick vom St. Josef Hospital der Ruhr-Universität sowie dem Biophysiker und PRODI-Gründungsdirektor Prof. Dr. Klaus Gerwert. Die Gruppe entwickelte ein neuronales Netz, also eine KI, die einordnen kann, ob eine Gewebeprobe Tumor enthält oder nicht. Dazu fütterten sie die KI mit vielen mikroskopischen Gewebebildern, von denen einige tumorhaltig, andere tumorfrei waren. „Neuronale Netze sind zunächst eine Black Box: Es ist unklar, welche Unterscheidungsmerkmale ein Netzwerk aus den Trainingsdaten lernt“, erläutert Axel Mosig. Im Vergleich zu menschlichen Experten fehlt ihnen die Fähigkeit, Entscheidungen zu erklären. „Gerade bei medizinischen Anwendungen ist es aber wichtig, dass die KI erklärbar und somit vertrauenswürdig ist“, ergänzt der an der Studie beteiligte Bioinformatiker David Schuhmacher.

Aus dem mikroskopischen Bild einer Gewebeprobe (links) leitet das neuronale...
Aus dem mikroskopischen Bild einer Gewebeprobe (links) leitet das neuronale Netz eine Aktivierungskarte (rechts) ab. Eine Hypothese stellt den Bezug her zwischen der rein rechnerisch ermittelten Intensität der Aktivierung und der experimentell überprüfbaren Erkennung von Tumorregionen her.

© PRODI

Die erklärbare KI des Bochumer Teams basiert daher auf der einzigen Art von sinnvollen Aussagen, die die Wissenschaft kennt: auf falsifizierbaren Hypothesen. Ist eine Hypothese falsch, so muss das durch ein Experiment nachweisbar sein. Künstliche Intelligenz folgt normalerweise dem Prinzip des induktiven Schließens: Aus konkreten Beobachtungen, den Trainingsdaten, erstellt die KI ein allgemeines Modell, auf dem basierend sie alle weiteren Beobachtungen bewertet. 

Auf den ersten Blick erscheinen die induktiv arbeitende KI und die deduktive wissenschaftliche Methode fast unvereinbar

Stephanie Schörner

Das Problem dahinter hat der Philosoph David Hume bereits vor 250 Jahren beschrieben und lässt sich leicht veranschaulichen: Wenn man noch so viele weiße Schwäne beobachten würde, könnte man aus diesen Daten trotzdem niemals schließen, dass alle Schwäne weiß sind und dass es keine schwarzen Schwäne gibt. Die Wissenschaft bedient sich daher der sogenannten deduktiven Logik. Bei diesem Vorgehen ist eine allgemeine Hypothese der Ausgangspunkt. Zum Beispiel wird die Hypothese, dass alle Schwäne weiß sind, durch die Beobachtung eines schwarzen Schwans falsifiziert. „Auf den ersten Blick erscheinen die induktiv arbeitende KI und die deduktive wissenschaftliche Methode fast unvereinbar“, sagt die ebenfalls an der Studie beteiligte Physikerin Stephanie Schörner. Aber die Forschenden fanden einen Weg. Ihr neu entwickeltes neuronales Netz liefert nicht nur eine Klassifikation, ob eine Gewebeprobe tumorhaltig oder tumorfrei ist. Sie erzeugt zusätzlich eine Aktivierungskarte des mikroskopischen Gewebebildes.

Die Aktivierungskarte orientiert sich an einer falsifizierbaren Hypothese, nämlich dass die vom neuronalen Netz abgeleitete Aktivierung genau den Tumorregionen in der Probe entspricht. Mit ortsspezifischen molekularen Methoden kann diese Hypothese überprüft werden. „Dank der interdisziplinären Strukturen am PRODI haben wir beste Voraussetzungen, um den hypothesenbasierten Ansatz zukünftig in die Entwicklung vertrauenswürdiger Biomarker-KI einfließen zu lassen, beispielsweise um bestimmte Therapie-relevante Tumor-Subtypen unterscheiden zu können“, resümiert Axel Mosig. 


Quelle: Ruhr-Universität Bochum 

04.09.2022

Verwandte Artikel

Photo

News • Blick in die Black Box

Krebs-Diagnose per KI: Wie verlässlich ist der Algorithmus?

KI soll das Gesundheitswesen effizienter und günstiger machen. Doch wie können Mediziner sicher sein, dass die Maschine keine Fehler macht? Dieser Frage gehen Forscher der FH Dortmund nach.

Photo

News • Klassifizierung von Tumoren

Nasenhöhlenkrebs: KI bringt Schub für Diagnostik

Forschende aus München und Berlin haben eine Methode entwickelt, um mithilfe von künstlicher Intelligenz schwer diagnostizierbare Nasenhöhlentumore zu klassifizieren.

Photo

News • Potenzial auf dem Prüfstand

Endoskopie: KI klassifiziert Veränderungen im Gallengang

Das Projekt „Neuronale Netze in der Cholangioskopie“ untersucht, ob KI bei einer Cholangioskopie zwischen entzündlichen und bösartigen Veränderungen der Gallengänge unterschieden kann.

Verwandte Produkte

Newsletter abonnieren