Mit dem ersten Krebszellmodell konnten Forschende der TU Graz ein essentielles Werkzeug für die moderne Krebsforschung und Medikamentenentwicklung auf den Weg bringen. Im Bild: eine sich teilende Krebszelle

Bildquelle: National Institutes of Health/National Center for Microscopy and Imaging Research

Krebsforschung

Forscher entwickeln erstes digitales Modell einer Krebszelle

Computermodelle gehören seit vielen Jahren zu Standardwerkzeugen in der biomedizinischen Grundlagenforschung.

Doch erst rund 70 Jahre nach der Erstveröffentlichung eines Ionenstrommodells einer Nervenzelle durch Hodgkin & Huxley im Jahr 1952, ist es Forschern der TU Graz unter Mitwirkung der Medizinischen Universität Graz und des Memorial Sloan Kettering Cancer Center in New York gelungen, das weltweit erste Krebszellmodell zu erarbeiten und damit ein „essentielles Werkzeug für die moderne Krebsforschung und Medikamentenentwicklung auf den Weg zu bringen“, freut sich Christian Baumgartner. Der Leiter des Instituts für Health Care Engineering mit Europaprüfstelle für Medizinprodukte der TU Graz ist Seniorautor jener Publikation im Fachjournal PLoS Computational Biology, in der das digitale Modell vorgestellt wird.

Digitale Zellmodelle fokussierten bisher auf erregbare Zellen wie etwa Nerven- oder Herzmuskelzellen und ermöglichen die Simulation elektrophysiologischer Vorgänge nicht nur auf zellulärer, sondern auch auf Gewebs- und Organebene. Diese Modelle werden zur Diagnoseunterstützung und Therapiebegleitung im klinischen Alltag bereits eingesetzt. Das internationale Forschungsteam rund um Baumgartner legte das Augenmerk nun erstmals auf die spezifischen elektrophysiologischen Eigenschaften nicht-erregbarer Krebszellen.

In erregbaren Zellen löst ein elektrischer Stimulus sogenannte Aktionspotenziale aus. Das führt zu kurzzeitigen, Millisekunden dauernden elektrischen Potenzialänderungen an der Zellmembran, die „elektrische“ Informationen von Zelle zu Zelle weiterleiten. Durch diesen Mechanismus kommunizieren neuronale Netzwerke oder wird der Herzmuskel aktiviert, der infolge dessen kontrahiert. Aus experimentellen Untersuchungen ist bekannt, dass auch „nicht-erregbare“ Zellen charakteristische Potenzialschwankungen an der Zellmembran aufweisen. „Im Vergleich zu erregbaren Zellen erfolgen die Potenzialänderungen aber sehr langsam und über den gesamten Zellzyklus hinweg, also über Stunden und Tage, und dienen als Signal für den Übergang zwischen den einzelnen Zellzyklusphasen“, erklärt Christian Baumgartner. Zusammen mit der stellvertretenden Institutsleiterin Theresa Rienmüller und der Doktorandin Sonja Langthaler verfolgte Christian Baumgartner als erster die Idee, ein Simulationsmodell dieser Mechanismen zu entwickeln.

Von links: Sonja Langthaler, Christian Baumgartner und Theresa Rienmüller,...
Von links: Sonja Langthaler, Christian Baumgartner und Theresa Rienmüller, alle vom Institut für Health Care Engineering der TU Graz, verfolgten als erste die Idee eines Simualtionsmodells für Krebszellen

© Lunghammer - TU Graz

Krankhafte Veränderungen der Zellmembranspannung, insbesondere während des Zellzyklus, sind für die Krebsentstehung und -progression von grundlegender Bedeutung. Sonja Langthaler geht ins Detail: „Ionenkanäle verbinden das Äußere mit dem Inneren einer Zelle. Sie ermöglichen den Austausch von Ionen wie Kalium, Calcium oder Natrium und regeln dadurch das Membranpotenzial. Änderungen in der Zusammensetzung der Ionenkanäle sowie ein verändertes funktionales Verhalten selbiger können Störungen in der Zellteilung zur Folge haben, möglicherweise sogar die Zelldifferenzierung beeinflussen und damit eine gesunde Zelle in eine krankhafte (karzinogene) Zelle verwandeln.“

Wir bekommen [über das Computermodell] Auskunft über die Auswirkungen gezielter Eingriffe auf die Krebszelle

Christian Baumgartner

Für ihr digitales Krebszellenmodell wählte das Team das Beispiel der menschlichen Lungenadenokarzinom-Zelllinie A549. Das Computermodell simuliert die rhythmische Schwingung des Membranpotenzials während des Überganges zwischen den einzelnen Zellzyklusphasen und ermöglicht die Vorhersage, welche Membranpotenzialänderungen durch ein medikamentöses Ein- und Ausschalten ausgewählter Ionenkanälen verursacht werden. „Wir bekommen also Auskunft über die Auswirkungen gezielter Eingriffe auf die Krebszelle“, ergänzt Baumgartner.

Die Aktivität bestimmter Ionenkanäle kann zudem die Teilung krankhafter Zellen antreiben und damit das Tumorwachstum beschleunigen. Wenn man nun Ionenkanäle gezielt manipuliert, wie durch neue, erfolgsversprechende Wirkstoffe und Medikamente, kann man die Zellmembranspannung und damit das gesamte elektrophysiologische System sozusagen aus der Spur werfen. „Damit ließen sich Krebszellen in einer bestimmten Zellzyklusphase festhalten, aber auch vorzeitig in den Zelltod (Apoptose) schicken. Man könnte Krebszellen quasi im Wachstum einfrieren oder zum Selbstmord anregen. Und genau solche Mechanismen lassen sich mithilfe von Modellen simulieren“. Baumgartner und sein Team sehen das erste digitale Krebszellenmodell als den Beginn umfassenderer Forschungen. Um den Detailgrad des Modells zu erhöhen, sind weitere experimentelle und messtechnische Validierungen geplant und beim Wissenschaftsfonds FWF zur Förderung eingereicht.


Quelle: TU Graz

01.07.2021

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Apoptose-Forschung

Dem programmierten Zelltod auf der Spur

Neue Erkenntnisse zum programmierten Zelltod (Apoptose) könnten Grundlagen für bessere Therapien gegen Entzündungserkrankungen und Krebs schaffen.

Photo

Krebsforschung

Dem Urspung mutierter Zellen auf der Spur

Forscher haben eine Methode vorgestellt, die Entwicklungsprozesse auf Basis der DNA einzelner Zellen zurückverfolgt. Das könnte Einblick in die Entstehung bestimmter Krebsarten ermöglichen.

Photo

Ansatzpunkt für neue Wirkstoffe

Neue Einblicke in den Stoffwechsel von Krebszellen

Wissenschaftler haben herausgefunden, dass Krebszellen den Succinat-Rezeptor benötigen, um den Umsatz ihres Stoffwechsels zu kontrollieren. Dies soll bei der Entwicklung neuer Therapeutika helfen.

Verwandte Produkte

FUJIFILM Wako - Autokit CH50 Assay

Immunoassays

FUJIFILM Wako - Autokit CH50 Assay

Wako Chemicals GmbH
Mindray – BC-6200 / 6000 Auto Hematology Analyzer

Blood Cell Couner

Mindray – BC-6200 / 6000 Auto Hematology Analyzer

Shenzhen Mindray Bio-Medical Electronics Co., Ltd
Mindray – BC-6800Plus Auto Hematology Analyzer

Blood Cell Couner

Mindray – BC-6800Plus Auto Hematology Analyzer

Shenzhen Mindray Bio-Medical Electronics Co., Ltd
MolGen – PurePrep 96

Extraction

MolGen – PurePrep 96

MolGen
Newsletter abonnieren