Mit dem ersten Krebszellmodell konnten Forschende der TU Graz ein essentielles Werkzeug für die moderne Krebsforschung und Medikamentenentwicklung auf den Weg bringen. Im Bild: eine sich teilende Krebszelle

Bildquelle: National Institutes of Health/National Center for Microscopy and Imaging Research

Krebsforschung

Forscher entwickeln erstes digitales Modell einer Krebszelle

Computermodelle gehören seit vielen Jahren zu Standardwerkzeugen in der biomedizinischen Grundlagenforschung.

Doch erst rund 70 Jahre nach der Erstveröffentlichung eines Ionenstrommodells einer Nervenzelle durch Hodgkin & Huxley im Jahr 1952, ist es Forschern der TU Graz unter Mitwirkung der Medizinischen Universität Graz und des Memorial Sloan Kettering Cancer Center in New York gelungen, das weltweit erste Krebszellmodell zu erarbeiten und damit ein „essentielles Werkzeug für die moderne Krebsforschung und Medikamentenentwicklung auf den Weg zu bringen“, freut sich Christian Baumgartner. Der Leiter des Instituts für Health Care Engineering mit Europaprüfstelle für Medizinprodukte der TU Graz ist Seniorautor jener Publikation im Fachjournal PLoS Computational Biology, in der das digitale Modell vorgestellt wird.

Digitale Zellmodelle fokussierten bisher auf erregbare Zellen wie etwa Nerven- oder Herzmuskelzellen und ermöglichen die Simulation elektrophysiologischer Vorgänge nicht nur auf zellulärer, sondern auch auf Gewebs- und Organebene. Diese Modelle werden zur Diagnoseunterstützung und Therapiebegleitung im klinischen Alltag bereits eingesetzt. Das internationale Forschungsteam rund um Baumgartner legte das Augenmerk nun erstmals auf die spezifischen elektrophysiologischen Eigenschaften nicht-erregbarer Krebszellen.

In erregbaren Zellen löst ein elektrischer Stimulus sogenannte Aktionspotenziale aus. Das führt zu kurzzeitigen, Millisekunden dauernden elektrischen Potenzialänderungen an der Zellmembran, die „elektrische“ Informationen von Zelle zu Zelle weiterleiten. Durch diesen Mechanismus kommunizieren neuronale Netzwerke oder wird der Herzmuskel aktiviert, der infolge dessen kontrahiert. Aus experimentellen Untersuchungen ist bekannt, dass auch „nicht-erregbare“ Zellen charakteristische Potenzialschwankungen an der Zellmembran aufweisen. „Im Vergleich zu erregbaren Zellen erfolgen die Potenzialänderungen aber sehr langsam und über den gesamten Zellzyklus hinweg, also über Stunden und Tage, und dienen als Signal für den Übergang zwischen den einzelnen Zellzyklusphasen“, erklärt Christian Baumgartner. Zusammen mit der stellvertretenden Institutsleiterin Theresa Rienmüller und der Doktorandin Sonja Langthaler verfolgte Christian Baumgartner als erster die Idee, ein Simulationsmodell dieser Mechanismen zu entwickeln.

Von links: Sonja Langthaler, Christian Baumgartner und Theresa Rienmüller,...
Von links: Sonja Langthaler, Christian Baumgartner und Theresa Rienmüller, alle vom Institut für Health Care Engineering der TU Graz, verfolgten als erste die Idee eines Simualtionsmodells für Krebszellen

© Lunghammer - TU Graz

Krankhafte Veränderungen der Zellmembranspannung, insbesondere während des Zellzyklus, sind für die Krebsentstehung und -progression von grundlegender Bedeutung. Sonja Langthaler geht ins Detail: „Ionenkanäle verbinden das Äußere mit dem Inneren einer Zelle. Sie ermöglichen den Austausch von Ionen wie Kalium, Calcium oder Natrium und regeln dadurch das Membranpotenzial. Änderungen in der Zusammensetzung der Ionenkanäle sowie ein verändertes funktionales Verhalten selbiger können Störungen in der Zellteilung zur Folge haben, möglicherweise sogar die Zelldifferenzierung beeinflussen und damit eine gesunde Zelle in eine krankhafte (karzinogene) Zelle verwandeln.“

Wir bekommen [über das Computermodell] Auskunft über die Auswirkungen gezielter Eingriffe auf die Krebszelle

Christian Baumgartner

Für ihr digitales Krebszellenmodell wählte das Team das Beispiel der menschlichen Lungenadenokarzinom-Zelllinie A549. Das Computermodell simuliert die rhythmische Schwingung des Membranpotenzials während des Überganges zwischen den einzelnen Zellzyklusphasen und ermöglicht die Vorhersage, welche Membranpotenzialänderungen durch ein medikamentöses Ein- und Ausschalten ausgewählter Ionenkanälen verursacht werden. „Wir bekommen also Auskunft über die Auswirkungen gezielter Eingriffe auf die Krebszelle“, ergänzt Baumgartner.

Die Aktivität bestimmter Ionenkanäle kann zudem die Teilung krankhafter Zellen antreiben und damit das Tumorwachstum beschleunigen. Wenn man nun Ionenkanäle gezielt manipuliert, wie durch neue, erfolgsversprechende Wirkstoffe und Medikamente, kann man die Zellmembranspannung und damit das gesamte elektrophysiologische System sozusagen aus der Spur werfen. „Damit ließen sich Krebszellen in einer bestimmten Zellzyklusphase festhalten, aber auch vorzeitig in den Zelltod (Apoptose) schicken. Man könnte Krebszellen quasi im Wachstum einfrieren oder zum Selbstmord anregen. Und genau solche Mechanismen lassen sich mithilfe von Modellen simulieren“. Baumgartner und sein Team sehen das erste digitale Krebszellenmodell als den Beginn umfassenderer Forschungen. Um den Detailgrad des Modells zu erhöhen, sind weitere experimentelle und messtechnische Validierungen geplant und beim Wissenschaftsfonds FWF zur Förderung eingereicht.


Quelle: TU Graz

01.07.2021

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Sarkom-Forschung

Knochenkrebs bei Kindern: Zell-Sabotage soll Tumoren in den Tod treiben

Tumoren der Knochen und Weichteile, sogenannte Sarkome, treten vor allem bei Kindern, Jugendlichen und jungen Erwachsenen auf und sind bislang nur unzureichend erforscht. In Heidelberg beschäftigen…

Photo

Tumor-Physik

Krebszellen kommen als 'Gestaltwandler' ans Ziel

Wissenschaftlern der Universität Leipzig ist in Zusammenarbeit mit Kollegen aus Deutschland und den USA ein Durchbruch in der Forschung zur Verbreitung von Krebszellen gelungen. Die Biophysiker um…

Photo

Krebsforschung

Glioblastom: Bislang unbekannter Tumortreiber entdeckt

Es kommt nicht oft vor, dass Forscher noch einen neuen Zelltyp entdecken. Einem Team um Prof. Dr. Rainer Glaß von der Neurochirurgischen Klinik und Poliklinik des LMU Klinikums Großhadern ist dies…

Verwandte Produkte

FUJIFILM Wako - Autokit CH50 Assay

Clinical Chemistry

FUJIFILM Wako - Autokit CH50 Assay

Wako Chemicals GmbH
Mindray – BC-6200 / 6000 Auto Hematology Analyzer

Blood Cell Couner

Mindray – BC-6200 / 6000 Auto Hematology Analyzer

Shenzhen Mindray Bio-Medical Electronics Co., Ltd
Sarstedt – Cell Culture Products

Specialties

Sarstedt – Cell Culture Products

SARSTEDT AG & CO. KG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH
Newsletter abonnieren