3D-Informationen eines zellulären Mikrotubuli-Netzwerks, das mit roten...
3D-Informationen eines zellulären Mikrotubuli-Netzwerks, das mit roten Fluoreszenzfarbstoffen in der Nähe einer maßgeschneiderten Spiegelbeschichtung markiert ist, basierend auf der entfernungsabhängigen Lokalisierungsunsicherheit.

Quelle: Universität Würzburg

News • Spieglein, Spieglein...

Auflösungsschub für Mikroskope

Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken.

Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der Nature Zeitschrift „Light: Science and Applications“ veröffentlicht

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen ineinander – sie lassen sich nicht mehr voneinander unterscheiden. Ursache dieser Unschärfe ist die Beugung: Sie sorgt vereinfacht gesagt dafür, dass Lichtstrahlen sich nicht beliebig fein bündeln lassen. Jedes punktförmige Objekt wird daher nicht als Punkt, sondern als „Fleck“ abgebildet.

Photo
Konventionelle (links) und spiegelverstärkte dSTORM-Bilder eines einzelnen NPC-Rings.
Quelle: Universität Würzburg

Mit mathematischen Methoden lässt sich das Auflösungsvermögen dennoch deutlich verbessern. Dazu berechnet man aus der Helligkeitsverteilung des „Flecks“ sein exaktes Zentrum. Das funktioniert aber nur, wenn z­­wei nahe benachbarte Punkte des Untersuchungsobjekts zunächst nicht gleichzeitig, sondern nacheinander sichtbar sind, und erst später in der Bildbearbeitung zusammengeführt werden. Durch diese zeitliche Entkopplung wird eine Überlagerung der „Flecken“ verhindert. Forschende in den Lebenswissenschaften nutzen dieses trickreiche Verfahren seit einigen Jahren, zur superhochauflösenden Lichtmikroskopie von Zellen.

Eine Variante dieses Verfahrens, das an der Universität Würzburg in der Arbeitsgruppe von Prof. Dr. Markus Sauer entwickelt wurde, ist die so genannte dSTORM-Methode. Hierfür werden bestimmte Strukturen – zum Beispiel eine Pore eines Zellkerns – mit fluoreszierenden Farbstoffen angefärbt. Jedes der Farbstoff-Moleküle blinkt in unregelmäßigen Abständen auf und repräsentiert einen Teil der Pore. Das Bild der kompletten Kernporen ist also zunächst nicht sichtbar, sondern entsteht erst nach der Bildbearbeitung durch die Überlagerung mehrerer tausend Bilder.

Mit dem dSTORM-Verfahren lässt sich die Auflösung eines herkömmlichen Lichtmikroskops um den Faktor zehn steigern. „Dadurch ist zum Beispiel die Architektur einer Zelle bis auf Molekül-Niveau sichtbar“, erklärt Hannah Heil. Die Forscherin promoviert am Rudolf-Virchow-Zentrum der Universität Würzburg in der Gruppe von Prof. Dr. Katrin Heinze. Sie konnte die Methode nun zusammen mit ihren Kolleginnen und Kollegen noch einmal entscheidend verbessern: Mit Hilfe eines einfachen Tricks ist es ihnen gelungen, die Auflösung nahezu zu verdoppeln.

Das Verfahren ist ein fantastisches Add-On für die moderne Mikroskopie

Katrin Heinze

Dazu bedampften sie ein Deckglas, auf dem die Zelle während der Beobachtung liegt, mit einer dünnen spiegelnden Nanobeschichtung, die aus Silber und transparentem Silizium-Nitrit bestand. Die Beschichtung ist biokompatibel, schädigt also die Zelle nicht. Mit dieser Methode erzielten die beiden Arbeitsgruppen zwei Effekte: Einerseits reflektierte der Spiegel das von der Pore ausgestrahlte Licht zurück zum Mikroskop, wodurch sich die Helligkeit des Fluoreszenzsignals erhöhte und somit ebenfalls die effektive Bildschärfe.

Dazu kommt ein zweites Phänomen: Die ausgestrahlten und die reflektierten Lichtwellen überlagern sich. Dadurch entstehen so genannte Interferenzen. Dabei wird je nach Entfernung zum Spiegel das Licht verstärkt oder abgeschwächt. „Auf diese Weise sehen wir vor allem Strukturen in einer bestimmten Bildebene“, sagt Heil. „Alles was sich darüber oder darunter befindet und das Bild eventuell stören könnte, wird dagegen ausgeblendet.“ Damit genau die gewünschten Bildteile sichtbar werden, muss die Dicke der auf den Spiegel aufgebrachten transparenten Lage passend gewählt werden. Heinze und Heil nutzen unter anderem Computer-Simulationen, um die Beschichtung je nach Objekt maßzuschneidern.

Insgesamt sei die Methode erstaunlich leicht anzuwenden, betont Hannah Heil. „Das ist es, was ich an unserem Ansatz besonders mag.“ Prof. Heinze ergänzt: „Abgesehen von dem beschichteten Träger, dessen Herstellung kaum etwas kostet, benötigt man keine zusätzliche Mikroskopie-Hardware oder Software, um die Auflösung zu steigern. Das Verfahren ist also ein fantastisches Add-On für die moderne Mikroskopie.“


Quelle: Universität Würzburg

11.12.2018

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Max-Planck-Institut für Intelligente Systeme

Mit neuem Spektroskopie-Mikroskop ein einzelnes Nanoteilchen in Echtzeit beobachten

Wissenschaftler der Forschungsgruppe Mikro, Nano und Molekulare Systeme am Max-Planck-Institut für Intelligente Systeme haben ein neuartiges Spektroskopie-Mikroskop entwickelt, mit dem sie ein…

Photo

News • Durchblick mit Fluoreszenz

Supermikroskop macht lebende Zellen sichtbar

Forscher der Polnischen Akademie der Wissenschaften (IPC PAS) haben chemische Reaktionen in extrem kleinen Volumina sichtbar gemacht. Sie können beobachten, wie genau sich Moleküle bewegen, wenn…

Photo

News • Bildgebung innovativ

Neues Nano-CT lässt Winzling ganz groß rauskommen

Computertomographie (CT) ist in Krankenhäusern eine Standardprozedur. Für extrem kleine Untersuchungsgegenstände war sie aber bislang nicht geeignet. Im Fachmagazin PNAS beschreibt ein Team der…

Verwandte Produkte

Newsletter abonnieren