GNF High-Throughput Flow Cytometry Screening System
GNF High-Throughput Flow Cytometry Screening System
Credit: Genomics Institute of the Novartis Research Foundation (GNF)

News • High-throughput system

Speeding up flow cytometry to discover new drugs

A new SLAS Discovery original research article available now for free ahead-of-print, researchers from the Genomics Institute of the Novartis Research Foundation (GNF) highlights a diversity of approaches that their automated high-throughput flow cytometry has enabled for phenotypic drug discovery.

Flow cytometry is a very powerful tool that has been used for decades and allows for multiparametric readouts at the single cell level within heterogeneous cell populations. However, in the context of high-throughput screening, flow cytometry is slow, low-throughput, and is not amenable to automation. The GNF group has developed a fully automated screening system that solves this problem. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery.

Over the past five years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. 

Pharmaceutical companies are tasked with finding new drugs that provide real benefit to patients.  A common approach is through the use of phenotypic screening. This is dependent upon the ability to establish complex, biologically relevant screening assays and run high-throughput screening campaigns.  However, this kind of complex biology requires new methodologies for lead identification and screening systems like the one developed by the GNF team. 


Source: SLAS (Society for Laboratory Automation and Screening)

30.05.2018

Related articles

Photo

News • Personalised oncology

New platform to significantly reduce cancer drug testing and screening time

In a breakthrough for personalised oncology, scientists have developed and demonstrated a novel platform that can significantly reduce the time needed to determine the efficacy of anti-cancer drugs.

Photo

News • Regenerative properties discovered

Reprogramming immune cells to repair tissue damage

Regulatory T cells (Treg cells) are an immune cell type that reduces excessive immune responses and protects the body against autoimmune diseases. A new study shows that Treg cells in human tissues…

Photo

News • Target cells, medication effects, evasion methods

4 new facts about early Covid-19 infections

University of Minnesota Medical School researchers studied SARS-CoV-2 infections at individual cellular levels and made four major discoveries about the virus, including one that validates the…

Related products

Subscribe to Newsletter