Increased risk for severe infections

Up in smoke: Smoking increases SARS-CoV-2 receptors in the lung

New research suggests that cigarette smoke spurs the lungs to make more ACE2 (angiotensin-converting enzyme 2), the protein that the coronavirus responsible for COVID-19 grabs and uses to enter human cells.

The findings, reported in the journal Developmental Cell, may explain why smokers appear to be particularly vulnerable to severe infections. The analysis also indicates that the change is reversible, suggesting that quitting smoking might reduce the risk of a severe coronavirus infection.

coronavirus in cigarette smoke

Image source: CDC/ Alissa Eckert, MS; Dan Higgins, MAM / Unsplash/Damon Lam (mashup: HiE)

From the early stages of the current pandemic, scientists and clinicians have noted dramatic differences in how people respond to infection with SARS-CoV-2. Most infected individuals suffer only mild illness, if they experience any at all. But others require intensive care when the sometimes-fatal virus attacks. Three groups, in particular, have been significantly more likely than others to develop severe illness: men, the elderly, and smokers. 

With most laboratory experiments on hold due to the pandemic, Cold Spring Harbor Laboratory (CSHL) Fellow Jason Sheltzer and Joan Smith, an engineer at Google, turned to previously published data to seek possible explanations for these disparities. They were curious whether the vulnerable groups might share some key feature related to the human proteins that the coronavirus relies on for infection. “We started gathering all the data we could find,” Sheltzer says, explaining that he and Smith focused first on comparing gene activity in the lungs across different ages, between the sexes, and between smokers and nonsmokers. “When we put it all together and started analyzing it, we saw that both mice that had been exposed to smoke in a laboratory and humans who were current smokers had significant upregulation of ACE2.”

Recommended article

Photo

Coronavirus disease research

Seeking a COVID-19 antidote: the potential of ACE2

As coronavirus disease COVID-19 continues to jet and alight invisibly around the globe, scientists now report that the virus has mutated to become two strains: the older ‘S-type’ appears milder and less infectious, while the later-emerging ‘L-type’, is more aggressive, spreads more quickly, and currently accounts for about 70 per cent of cases. Worldwide, medical researchers are exploring…

While they found no evidence that age or sex impacts ACE2 levels in the lungs, the influence of smoke exposure was surprisingly strong, Sheltzer says. The change appears to be temporary, however: the data revealed that the level of ACE2 in the lungs of people who had quit smoking was similar to that of non-smokers. Sheltzer, Smith, and colleagues also found that the most prolific producers of ACE2 in the airways are mucus-producing cells called goblet cells. Smoking is known to increase the prevalence of such cells, a change that can protect the airways from irritants but—by amplifying the amount of ACE2 in the lungs—may also increase vulnerability to SARS-CoV-2.


Source: Cold Spring Harbor Laboratory (CSHL)

08.06.2020

Read all latest stories

Related articles

Photo

Nitrogen dioxide levels

Air pollution linked to higher COVID-19 mortality

Scientists have unearthed a possible link between the severity of COVID-19 and air quality. The preliminary study – looking at whether areas with higher levels of air pollutants in England are…

Photo

Taking control

How the coronavirus hijacks cells

Researchers at ETH Zurich and the University of Bern have discovered a mechanism by which the coronavirus manipulates human cells to ensure its own replication. This knowledge will help to develop…

Photo

After coronavirus infection

Study reveals why people with COVID-19 may lose their sense of smell

Researchers studying tissue removed from patients noses during surgery believe they may have discovered the reason why so many people with COVID-19 lose their sense of smell, even when they have no…

Related products

Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Sarstedt – Cell Culture Products

Specialties

Sarstedt – Cell Culture Products

SARSTEDT AG & CO. KG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH