News • Treatment for muscle loss injuries

Researchers make bacteria produce tissue-healing hydrogel

A research team at the Technical University of Denmark (DTU), led by Alireza Dolatshahi-Pirouz, has recently uncovered new ground in tissue engineering and cell therapy by harnessing the healing power of bacteria.

3d illustration of a man standing amidst various giant bacteria
Researchers from DTU have developed a new biopolymer for muscle tissue regeneration. They have harnessed the native bioproduction facilities in bacteria to synthesize a durable, resilient, and elastic hydrogel that may foster better therapies against traumatic muscle injuries.

Image credit: DTU

The group harnessed the native bioproduction facilities in bacteria to synthesize a new biopolymer with tissue-healing properties. They used this polymer to manufacture a durable, resilient, and elastic hydrogel for muscle tissue regeneration. The study is published in the journal Bioactive Materials and details a new biopolymer - Pantoan Methacrylate, PAMA for short - with muscle regeneration properties derived from bacteria. 

They have implemented this new hydrogel – or "bactogel" - to treat muscle injuries in rats with promising results. The in vivo study showed a significant increase in muscle tissue formation and reduced fibrous tissue. With nearly 100% mechanical recovery, good biocompatibility, and healing capacity, the PAMA bactogel presents a new path in the field. "This combination of feats is rarely encountered in the field, as most bioactive hydrogels display subpar mechanical properties that do not fit the mechanically demanding milieu of musculoskeletal tissues, such as muscles, says Associate Professor Alireza Dolatshahi-Pirouz from DTU Health Tech. "I believe that our new results could foster better therapies against musculoskeletal injuries in athletes, the elderly, as well as in wounded soldiers or others involved in accidents giving rise to traumatic muscle injuries."

Graphical abstract showing the structure of bacteria-derived hydrogels on tissue healing
Graphical abstract of the biopolymer research

Image source: Niknezhad SV et al., Bioactive Materials 2024 (CC BY-NC-ND 4.0)

With PAMA, the team has shown that they can achieve tissue regeneration in rats without using cells, and they expect much better healing by combining their bactogels with either muscle progenitor cells or stem cells. "I imagine a future where bacteria-derived polymers or put simply "bactomers" revolutionize the field of regenerative medicine. A future where bacteria in so-called regenerative bacto-baths secrete regenerative bactomers on demand to heal injured tissues in patients," says Alireza Dolatshahi-Pirouz. 


Source: Technical University of Denmark

21.08.2024

Related articles

Photo

News • Insights into ribosome variants

What keeps antibiotic-resistant bacteria from taking over?

It would seem that developing antibiotic resistance would give bacteria an immense advantage over their non-resistant counterparts. So, why do they not become dominant? New research may provide an…

Photo

News • Photothermal disinfection

Frying bacteria on implants with tiny gold radiators

New technology shows promise in protecting an implant against infections from resistant bacteria: By heating up small nanorods of gold with near-infrared light (NIR), the bacteria are killed.

Photo

News • Flexible device reduces biofilms

Bioelectronic patch 'electrifies' bacteria to prevent infections

Rsearchers developed a novel bioelectronic device that taps into the natural electrical activity of certain bacteria found on our skin, paving the way for a drug-free approach to managing infections.

Related products

Subscribe to Newsletter