Longevity

One for all: Convergent mechanism of ageing discovered

Researchers at the Max Planck Institute for Biology of Ageing and the Cluster of Excellence for Ageing Research CECAD at the University of Cologne have discovered folate metabolism as a fundamental process for ageing. Its regulation underlies many known ageing signaling pathways and leads to longevity. This could provide a new opportunity to improve human health during ageing on a broad basis.

Photo
Andrea Annibal uses the mass spectrometer to investigate various metabolites in long-lived mice.
Source: Link/Max Planck Institute for Biology of Ageing, 2021

Several different causes of ageing have been discovered, but the question remains whether there are common underlying mechanisms that determine ageing and lifespan. Researchers from the Max Planck Institute for Biology of Ageing and the CECAD Cluster of Excellence in Ageing research at the University Cologne have now come across folate metabolism in their search for such basic mechanisms. Its regulation underlies many known ageing signalling pathways and leads to longevity. This may provide a new possibility to broadly improve human health during ageing.

In recent decades, several cellular signalling pathways have been discovered that regulate the lifespan of an organism and are thus of enormous importance for ageing research. When researchers altered these signalling pathways, this extended the lifespan of diverse organisms. However, the question arises whether these different signalling pathways converge on common metabolic pathways that are causal for longevity.

The scientists started their search in the roundworm Caenorhabditis elegans, a well-known model organism for ageing research. “We studied the metabolic products of several, long-lived worm lines. Our analyses revealed that, among other things, we observed clear changes in the metabolites and enzymes of the folate cycle in all worm lines. Since folate metabolism plays a major role in human health, we wanted to further pursue its role in longevity”, explains Dr. Andrea Annibal, lead author of the study.

A common mechanism for longevity

Folates are essential vitamins important for the synthesis of amino acids and nucleotides – the building blocks of our proteins and DNA. “We tuned down the activity of specific enzymes of folate metabolism in the worms. Excitingly, the result was an increase in lifespan of up to 30 percent”, says Annibal. “We also saw that in long-lived strains of mice, folate metabolism is similarly tuned down. Thus, the regulation of folate metabolism may underlie not only the various longevity signalling pathways in worms, but also in mammals.”

”We are very excited by these findings because they reveal the regulation of folate metabolism as a common shared mechanism that affects several different pathways of longevity and is conserved in evolution”, adds Prof. Dr. Adam Antebi, director at the Max Planck Institute for Biology of Ageing. “Thus, the precise manipulation of folate metabolism may provide a new possibility to broadly improve human health during ageing.” In future experiments, the group aims to find out the mechanism by which the folate metabolism affects longevity.

Source: Max Planck Institute for Biology of Ageing

12.06.2021

Read all latest stories

Related articles

Photo

Patient response testing

New method predicts which cancer therapies work (and which don't)

A new technology that can study which therapies will work on patients with solid cancerous tumours has been developed by scientists at University College London (UCL). Researchers say the tool, which…

Photo

Leading cause for blindness

Breakthrough in research on age-related macular degeneration

Age-related macular degeneration (AMD) is the most common cause of blindness in developed countries affecting seven million in total in Germany, from which 500,000 people are suffering from late…

Photo

Neuroimaging research

Using mass spectrometry to diagnose brain diseases

To quickly and correctly diagnose diseases, medical professionals depend on identifying what biochemicals are present in tissue sections, where the biomolecules are, and at what concentrations. Mass…

Related products

Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – Axima iDplus Assurance

Mass Spectrometry

Shimadzu – Axima iDplus Assurance

Shimadzu Europa GmbH
Shimadzu – Axima iDplus Confidence

Mass Spectrometry

Shimadzu – Axima iDplus Confidence

Shimadzu Europa GmbH
Shimadzu – Axima iDplus Performance

Mass Spectrometry

Shimadzu – Axima iDplus Performance

Shimadzu Europa GmbH
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH
Shimadzu – LCMS-8045 CL

Mass Spectrometry

Shimadzu – LCMS-8045 CL

Shimadzu Europa GmbH
Subscribe to Newsletter