Image source: Shutterstock/s4svisuals

Two-way magnetic resonance tuning

New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis, offers a significant advance in using magnetic resonance imaging (MRI) to pick out even very small tumors from normal tissue.

The work is published in the journal Nature Nanotechnology

Chemical probes that produce a signal on MRI can be used to target and image tumors. The new research is based on a phenomenon called magnetic resonance tuning that occurs between two nanoscale magnetic elements. One acts to enhance the signal, and the other quenches it. Previous studies have shown that quenching depends on the distance between the magnetic elements. This opens new possibilities for noninvasive and sensitive investigation of a variety of biological processes by MRI.

The UC Davis team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. They call this two-way magnetic resonance tuning, or TMRET. Combined with specially developed imaging analysis software, the double signal enabled researchers to pick out brain tumors in a mouse model with greatly increased sensitivity. “It’s a significant advance,” said senior author Yuanpei Li, associate professor of biochemistry and molecular medicine at the UC Davis School of Medicine and Comprehensive Cancer Center. “This could help detect very small early-stage tumors.”

Recommended article

Photo

X-Nuclei MRI

Oxygen provides insights into tumour metabolism

Magnetic resonance imaging (MRI) usually measures the magnetic moment of the hydrogen atomic nuclei arising from the spin. However, scientists at the German Cancer Research Centre (DKFZ) are investigating the spin of other nuclei for imaging: ‘X-nuclei imaging has a large potential for MRI imaging as the x-nuclei play an important part in many physiological processes,’ according to doctor and…

The probe developed by the UC Davis team contains two components: nanoparticles of superparamagnetic iron oxide, or SPIO, and pheophorbide a–paramagnetic manganese, or P-Mn, packaged together in a lipid envelope. SPIO and P-Mn both give strong, separate signals on MRI, but as long as they are physically close together those signals tend to cancel each other out, or quench. When the particles enter tumor tissue, the fatty envelope breaks down, SPIO and P-Mn separate, and both signals appear.

Li’s laboratory focuses on the chemistry of MRI probes and developed a method to process the data and reconstruct images, which they call double-contrast enhanced subtraction imaging, or DESI. But for expertise in the physical mechanisms, they reached out to professors Kai Liu and Nicholas Curro at the UC Davis Department of Physics (Liu is now at Georgetown University). The physicists helped elucidate the mechanism of the TMRET method and refine the technique.

The researchers tested the method in cultures of brain and prostate cancer cells and in mice. For most MRI probes, the signal from the tumor is up to twice as strong as from normal tissue – a “tumor to normal ratio” of 2 or less. Using the new dual-contrast nanoprobe, Li and colleagues could get a tumor-to-normal ratio as high as 10. Li said the team is interested in translating the research into clinical use, although that will require extensive work including toxicology testing and scaling up production before they could apply for investigational new drug approval.


Source: University of California, Davis

26.05.2020

Read all latest stories

Related articles

Photo

The search is on

MRI contrast agents: Aiming to work without radioactivity

MRI is now indispensable for diagnosing diseases and monitoring therapies. However, the ongoing discussion on gadolinium deposits in the brain has intensified the search for alternatives. Dr Daniel…

Photo

Faster scanners, more parameters, better markers…

With MRI and CT scanners widely available in clinical routine, radiologists cull increasingly precise and relevant functional tumour information for diagnostics and monitoring purposes. Both…

Photo

Pediatric cancer imaging

DW MRI measures tumor chemotherapy response with less radiation

Whole body diffusion-weighted magnetic resonance imaging (DW MRI) may aid in the assessment of cancer treatment response in children and youth at much lower levels of radiation than current…

Related products

Canon – Vantage Galan 3 T

3 Tesla

Canon – Vantage Galan 3 T

Canon Medical Systems Europe B.V.
Hitachi – Airis Vento O5

Open

Hitachi – Airis Vento O5

Hitachi Medical Systems Europe (Holding) AG
Hitachi – Aperto Lucent O5

Open

Hitachi – Aperto Lucent O5

Hitachi Medical Systems Europe (Holding) AG
Hitachi – Echelon Smart

1.5 Tesla

Hitachi – Echelon Smart

Hitachi Medical Systems Europe (Holding) AG
Hitachi – Oasis

Open

Hitachi – Oasis

Hitachi Medical Systems Europe (Holding) AG
Medtron AG – Accutron MR3

Injectors

Medtron AG – Accutron MR3

MEDTRON AG