"Enhance that"

New algorithm sharpens focus of cryo-electron microscopes

Scientists have developed a tool that improves the resolution and accuracy of powerful microscopes that are used to reveal insights into biology and medicine.

Photo
A composite image of the enzyme lactase showing how cryo-EM’s resolution has improved dramatically in recent years. Older images to the left, more recent to the right.

Image credit: Veronica Falconieri/National Cancer Institute

In a study published in Nature Methods, a multi-institutional team led by Tom Terwilliger from the New Mexico Consortium and including researchers from Lawrence Berkeley National Laboratory (Berkeley Lab) demonstrates how a new computer algorithm improves the quality of the 3D molecular structure maps generated with cryo-electron microscopy (cryo-EM).

For decades, these cryo-EM maps – generated by taking many microscopy images and applying image-processing software – have been a crucial tool for researchers seeking to learn how the molecules within animals, plants, microbes, and viruses function. And in recent years, cryo-EM technology has advanced to the point that it can produce structures with atomic-level resolution for many types of molecules. Yet in some situations, even the most sophisticated cryo-EM methods still generate maps with lower resolution and greater uncertainty than required to tease out the details of complex chemical reactions.

“In biology, we gain so much by knowing a molecule’s structure,” said study co-author Paul Adams, Director of the Molecular Biophysics & Integrated Bioimaging Division at Berkeley Lab. “The improvements we see with this algorithm will make it easier for researchers to determine atomistic structural models from electron cryo-microscopy data. This is particularly consequential for modeling very important biological molecules, such as those involved in transcribing and translating the genetic code, which are often only seen in lower-resolution maps due to their large and complex multi-unit structures.”

Photo
Using the enzyme β-galactosidase, also called lactase, as a test case, the researchers applied the standard methods (a) and then applied the improvement algorithm without (b) and with a filter to improve the uniformity of noise in the map (c), both of these maps are more similar to the deposited high-resolution protein structure map (d).

Image cCredit: Terwilliger et al./Nature Methods

The algorithm sharpens molecular maps by filtering the data based on existing knowledge of what molecules look like and how to best estimate and remove noise (unwanted and irrelevant data) in microscopy data. An approach with the same theoretical basis was previously used to improve structure maps generated from X-ray crystallography, and scientists have proposed its use in cryo-EM before. But, according to Adams, no one had been able to show definitive evidence that it worked for cryo-EM until now.

The team – composed of scientists from New Mexico Consortium, Los Alamos National Laboratory, Baylor College of Medicine, Cambridge University, and Berkeley Lab – first applied the algorithm to a publicly available map of the human protein apoferritin that is known to have 3.1-angstrom resolution (an angstrom is equal to a 10-billionth of a meter; for reference, the diameter of a carbon atom is estimated to be 2 angstroms). Then, they compared their enhanced version to another publicly available apoferritin reference map with 1.8-angstrom resolution, and found improved correlation between the two. Next, the team used their approach on 104 map datasets from the Electron Microscopy Data Bank. For a large proportion of these map sets, the algorithm improved the correlation between the experimental map and the known atomic structure, and increased the visibility of details.

The authors note that the clear benefits of the algorithm in revealing important details in the data, combined with its ease of use – it is an automated analysis that can be performed on a laptop processor – will likely make it part of a standard part of the cryo-EM workflow moving forward. In fact, Adams has already added the algorithm’s source code to the Phenix software suite, a popular package for automated macromolecular structure solution for which he leads the development team.


Source: Lawrence Berkeley National Laboratory

09.10.2020

More on the subject:
Read all latest stories

Related articles

Photo

Sharper than ever

High-res image of bacterial bumps gives clues to antibiotic resistance

The sharpest images ever of living bacteria have been recorded by researchers at University College London, revealing the complex architecture of the protective layer that surrounds many bacteria and…

Photo

Detecting dementia in the blood

New promising approach for Alzheimer's diagnostics

If the suspicion of Alzheimer's disease creeps up, those affected must prepare themselves for lengthy and complex procedures until the case is clear. A team from Empa and the Cantonal Hospital of St.…

Photo

Microscopy enhanced

3D imaging of human organs with micrometer resolution

Researchers at Umeå University now demonstrate a method by which specific cell types in human organs can be studied with micrometer precision. The method can be used to reveal previously…

Related products

Hund – medicus pro Myko

Microscopy

Hund – medicus pro Myko

Helmut Hund GmbH
Olympus – BX53LED

Microscopy

Olympus – BX53LED

Olympus Europa SE & Co. KG
Olympus – CX33

Microscopy

Olympus – CX33

Olympus Europa SE & Co. KG
Olympus – SC180

Microscopy

Olympus – SC180

Olympus Europa SE & Co. KG
Olympus – UC90 4K Microscopy

Microscopy

Olympus – UC90 4K Microscopy

Olympus Europa SE & Co. KG
Subscribe to Newsletter