Model of alveolar cells in a lung
Model of alveolar cells in a lung

Image source: Cogno N et al., Communications Medicine 2024 (CC BY 4.0)

News • Research on radiation interaction

Lung tissue model to increase cancer radiotherapy safety

An innovative computer model of a human lung is helping scientists simulate, for the first time, how a burst of radiation interacts with the organ on a cell-by-cell level.

This research, carried out at the University of Surrey and GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, and published in the journal Communications Medicine, could lead to more targeted treatments for cancer and reduce the damage caused by radiotherapy. "Doctors could one day use our model to choose the right length and strength of radiotherapy – tailored to their patient. This is exciting enough – but others could use our technique to study other organs. This could unlock all kinds of medical knowledge and could be great news for doctors and future patients," says Dr Roman Bauer, Senior Lecturer at the University of Surrey.

[This model] will allow us to study the way fibrosis and other conditions are actually caused, and how they develop over time

Marco Durante

Nowadays, more than half of cancer patients receive radiotherapy – but too high a dose can injure their lungs. This can lead to conditions like pneumonitis and fibrosis. To study these injuries, researchers at GSI and the University of Surrey used artificial intelligence to develop a new model of part of a human lung – cell by cell. 

"For the first time, BioDynaMo makes interactive models of entire human organs achievable. This will allow us to model individual patients’ lungs in a way that’s just not possible with the very general statistical methods we currently use. What’s more – it will allow us to study the way fibrosis and other conditions are actually caused, and how they develop over time," says Professor Dr Marco Durante, Head of the Biophysics Department at the GSI Helmholtzzentrum für Schwerionenforschung. 


Source: University of Surrey

22.02.2024

Related articles

Photo

News • Sticky, yet promising research

3D printing lung tissue from mucus-based bioink

Researchers have created a mucus-based bioink which can be used for 3D printing lung tissue. This advance could one day help study and treat chronic lung conditions.

Photo

News • The role of tissue stiffness

Pancreatic cancer: new approach could reverse chemo resistance

Researchers at Stanford have demonstrated that conditions in the matrix surrounding pancreatic cancer cells impact whether those cells respond to chemotherapy.

Photo

News • 6.5 million European funding

Fighting cancer with artificial cells and tissue

Artificial cells to combat cancer: Research groups are working to create synthetic micro-organisms capable of detecting the presence of the disease and delivering anti-cancer therapies.

Related products

Subscribe to Newsletter