Imaging glucose uptake inside single cells

Researchers at Columbia University have reported a new approach to visualize glucose uptake activity in single living cells by light microscopy with minimum disturbance.

Stimulated Raman scattering (SRS) imaging of glucose uptake activity by...
Stimulated Raman scattering (SRS) imaging of glucose uptake activity by targeting the alkyne tag of a novel glucose analogue in live mouse brain hippocampal neurons and tumor tissues (in red).
Source: Fanghao Hu

In a recent study published in Angewandte Chemie International Edition, Associate Professor of Chemistry Wei Min's team developed a new glucose analogue that can mimic the natural glucose, and imaged its uptake as energy source by living cancer cells, neurons and tissues at the single cell level.

Glucose is consumed as an energy source by almost all life forms, from bacteria to human. The uptake of glucose by cells closely reflects their energetic needs, and is becoming poorly regulated in many pathological conditions such as obesity, diabetes and cancer. To visualize this important process, several prominent techniques have been developed in the past few decades. Radioactive fluorine-18 labeled glucose FDG is widely applied in clinical cancer diagnostics to locate metabolic hot spots in human body using positron emission tomography (PET). Magnetic resonance imaging (MRI) has recently demonstrated glucose imaging in mouse tumors. Although both methods find great use in clinical application, they do not have sufficient spatial resolution to visualize glucose uptake down to single cells.

To image glucose uptake activity at the cellular level, glucose analogues labeled with fluorescent dyes have been developed. Unfortunately, tagging fluorophores onto glucose alters its chemical property. Moreover, fluorescent dyes are always larger than the glucose itself. Therefore, most fluorescent glucose analogues have undesired interactions in cells and tissues, which would bias the true glucose distribution.

To overcome these problems, Min and his team developed a new modality to visualize glucose uptake activity inside single cells based on stimulated Raman scattering (SRS) imaging, and demonstrated its use in live cancer cells, tumor xenograft tissues, primary neurons and mouse brain tissues. Coupling SRS with alkyne tags has been reported earlier by the same group as a general strategy for imaging small biomolecules. Specifically, glucose is labeled with a small alkyne tag (i.e., carbon-carbon triple bond) to generate a strong and characteristic Raman scattering signal in the otherwise silent region, which can be picked up by SRS microscope with high sensitivity and specificity to produce a quantitative concentration map in three dimensions.

This technique is able to distinguish cancer cell lines with differing metabolic activities and reveals heterogeneous uptake patterns in neurons, mouse brain tissues and tumor tissues with clear cell-to-cell variations. The border between tumor proliferating region and the necrotic region can be clearly visualized down to single cell with sharp contrast in glucose uptake activity.

"By offering the distinct advantage of subcellular resolution and avoiding the undesirable influence of fluorescent dyes, we believe our technique can complement FDG in clinical PET imaging for visualizing glucose uptake activity at the cellular level", says the lead author Fanghao Hu, a Ph.D. candidate in chemistry. Currently, Min's team is working on applying this technique for imaging glucose uptake dynamics in mice. "We expect that our new method will become an attractive tool to study energy requirements of living systems with subcellular resolution", says Min, "especially in brain and malignant tumors that are in high demand of energy."

Source: Columbia University

20.07.2015

Read all latest stories

Related articles

Photo

Pediatric cancer imaging

DW MRI measures tumor chemotherapy response with less radiation

Whole body diffusion-weighted magnetic resonance imaging (DW MRI) may aid in the assessment of cancer treatment response in children and youth at much lower levels of radiation than current…

Photo

X-Nuclei MRI

Oxygen provides insights into tumour metabolism

Magnetic resonance imaging (MRI) usually measures the magnetic moment of the hydrogen atomic nuclei arising from the spin. However, scientists at the German Cancer Research Centre (DKFZ) are…

Photo

Hirnübungen I

Neuro MR: What‘s new in brain tumors?

From the extremely new, but not very available, to the somewhat new, very available and highly useful, Walter Kucharczyk will cover the potentials and practicalities in advanced brain tumor imaging.

Related products

allMRI GmbH – Foldable MRI wheelchair

Accessories / Complementary systems

allMRI GmbH – Foldable MRI wheelchair

allMRI GmbH
allMRI GmbH · Mobile MRI procedure lamp

Accessories/ Complementary Systems

allMRI GmbH · Mobile MRI procedure lamp

allMRI GmbH
allMRI GmbH – MRI doppler ultrasound gating device

Accessories/ Complementary Systems

allMRI GmbH – MRI doppler ultrasound gating device

allMRI GmbH
allMRI GmbH – MRI safe metal free cleaning tool set

Accessories/ Complementary Systems

allMRI GmbH – MRI safe metal free cleaning tool set

allMRI GmbH
BD Vacutainer Urine Tubes for Microbiology

Other

BD Vacutainer Urine Tubes for Microbiology

BD – Becton Dickinson
Canon – Vantage Elan

1.5 Tesla

Canon – Vantage Elan

Canon Medical Systems Europe B.V.