Imaging glucose uptake inside single cells

Researchers at Columbia University have reported a new approach to visualize glucose uptake activity in single living cells by light microscopy with minimum disturbance.

Stimulated Raman scattering (SRS) imaging of glucose uptake activity by...
Stimulated Raman scattering (SRS) imaging of glucose uptake activity by targeting the alkyne tag of a novel glucose analogue in live mouse brain hippocampal neurons and tumor tissues (in red).
Source: Fanghao Hu

In a recent study published in Angewandte Chemie International Edition, Associate Professor of Chemistry Wei Min's team developed a new glucose analogue that can mimic the natural glucose, and imaged its uptake as energy source by living cancer cells, neurons and tissues at the single cell level.

Glucose is consumed as an energy source by almost all life forms, from bacteria to human. The uptake of glucose by cells closely reflects their energetic needs, and is becoming poorly regulated in many pathological conditions such as obesity, diabetes and cancer. To visualize this important process, several prominent techniques have been developed in the past few decades. Radioactive fluorine-18 labeled glucose FDG is widely applied in clinical cancer diagnostics to locate metabolic hot spots in human body using positron emission tomography (PET). Magnetic resonance imaging (MRI) has recently demonstrated glucose imaging in mouse tumors. Although both methods find great use in clinical application, they do not have sufficient spatial resolution to visualize glucose uptake down to single cells.

To image glucose uptake activity at the cellular level, glucose analogues labeled with fluorescent dyes have been developed. Unfortunately, tagging fluorophores onto glucose alters its chemical property. Moreover, fluorescent dyes are always larger than the glucose itself. Therefore, most fluorescent glucose analogues have undesired interactions in cells and tissues, which would bias the true glucose distribution.

To overcome these problems, Min and his team developed a new modality to visualize glucose uptake activity inside single cells based on stimulated Raman scattering (SRS) imaging, and demonstrated its use in live cancer cells, tumor xenograft tissues, primary neurons and mouse brain tissues. Coupling SRS with alkyne tags has been reported earlier by the same group as a general strategy for imaging small biomolecules. Specifically, glucose is labeled with a small alkyne tag (i.e., carbon-carbon triple bond) to generate a strong and characteristic Raman scattering signal in the otherwise silent region, which can be picked up by SRS microscope with high sensitivity and specificity to produce a quantitative concentration map in three dimensions.

This technique is able to distinguish cancer cell lines with differing metabolic activities and reveals heterogeneous uptake patterns in neurons, mouse brain tissues and tumor tissues with clear cell-to-cell variations. The border between tumor proliferating region and the necrotic region can be clearly visualized down to single cell with sharp contrast in glucose uptake activity.

"By offering the distinct advantage of subcellular resolution and avoiding the undesirable influence of fluorescent dyes, we believe our technique can complement FDG in clinical PET imaging for visualizing glucose uptake activity at the cellular level", says the lead author Fanghao Hu, a Ph.D. candidate in chemistry. Currently, Min's team is working on applying this technique for imaging glucose uptake dynamics in mice. "We expect that our new method will become an attractive tool to study energy requirements of living systems with subcellular resolution", says Min, "especially in brain and malignant tumors that are in high demand of energy."

Source: Columbia University

20.07.2015

Read all latest stories

Related articles

Photo

News • Primary tumor or metastasis?

Deep learning and radiomics for precise differentiation in brain tumors

The distinction between primary tumors and metastases can be made quickly and accurately in brain tumors using radiomics and deep learning algorithms, a new study shows.

Photo

News • Neuroanatomy

Researchers create high-res 3D map of the brain

A team led by scientists from Amsterdam have combined MRI and microscopy to produce 3D images of two entire brains with a previously unmatched level of detail.

Photo

Article • Ovarian cancer and endometriosis detection

Women’s health imaging: PET/CT and T2*w MR show promise

Diagnostic imaging in women’s health advances: PET/CT might provide a more accurate imaging alternative to CT in ovarian cancer. T2*-weighted MR imaging in deep endometriosis detection also shows…

Related products

Accutron MR

Injector

Medtron AG · Accutron MR

MEDTRON AG
Accutron MR3

Injectors

Medtron AG · Accutron MR3

MEDTRON AG
Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon · Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
Airis Vento Plus

Open

Fujifilm · Airis Vento Plus

FUJIFILM Europe GmbH
Aperto Lucent Plus

Open

Fujifilm · Aperto Lucent Plus

FUJIFILM Europe GmbH
Subscribe to Newsletter