News • Right in the stomach

Helicobacter creates immune system blind spot

Around 50% of people are infected with the gastric bacterium H. pylori, which can lead to gastric cancer. It usually persists life-long, despite a strong inflammatory defence reaction in the gastric mucosa.

Source: MPI for Infection Biology

Persistence in the midst of acute inflammation is a highly unusual feat for a pathogen and the mechanism has so far remained elusive. Now researchers at the Max Planck Institute for Infection Biology in Berlin have shown that by extracting cholesterol from host cell membranes H. pylori prevents assembly of interferon receptors. Without this signalling pathway, the adaptive immune system cannot be summoned to infected cells, generating a “micro-niche” where the bacteria can survive.

Photo
Surface of a Helicobacter-infected mucosoid culture made of normal epithelial cells from the human stomach. Red: Helicobacter pylori, blue: nuclei, green: cell membranes.
Source: MPI for Infection Biology

While gastritis and gastric ulcer disease used to be put down to stress and dietary factors, it was discovered in the 1980s that the actual culprit is infection with a bacterium, H. pylori. This pathogen is now classed as a type I carcinogen by the WHO, as it is the major risk factor for development of gastric carcinoma. Attempts to develop a vaccine against H. pylori have been unsuccessful and the new results provide the first potential explanation for these failures: H. pylori blocks the signal that would allow infected cells to summon help from the immune system.

Driven by their interest in understanding the mechanisms by which bacterial infections can give rise to cancer, the laboratory of Prof. Thomas F. Meyer already discovered over a decade ago that H. pylori expresses an enzyme called cholesterol-α-glucosyltransferase to extract the cholesterol it needs from host cells. Without this enzyme, the bacteria are unable to infect mice. At the time, the group also noted that excess cholesterol in the diet of the mice enhanced clearance of the pathogen but exacerbated inflammation. Exactly how the ability to extract cholesterol was linked to immune evasion remained unclear at the time.

Infected cells are incapable of responding to the cytokines interferon-γ...
Infected cells are incapable of responding to the cytokines interferon-γ (IFN-γ) and IL-22. As a result, inflammation and defense only occur outside the infected niches of the mucosal surface.
Source: MPI for Infection Biology

Showing how H. pylori persists in the midst of an acute inflammation explains a whole series of observations that have puzzled researchers for decades

Pau Morey

Now, new technologies for growing primary stomach cells in vitro have been instrumental for solving this puzzle. Meyer’s laboratory succeeded in reconstituting the mucosal epithelium of the stomach, yielding so-called “mucosoids” in which gastric cells grow as monolayers with an outer and an inner surface and even produce the mucus that lines and protects the stomach. As a result, the infected “mini-organs” could be kept alive for months.

Infected gastric epithelial cells normally summon immune cells and generate antimicrobial factors that kill the bacteria. This response depends on a crucial immune signaling factor produced by epithelial cells: interferon-γ. Using the mucosoid model, the group found that the bacteria survive as small micro-colonies on top of cells. This turned out to be due to the absence of so-called “lipid rafts” in the cell membranes, which are required for assembly of interferon receptor complexes. Without these, host cells simply did not respond to interferon-γ at all. The lipid rafts are made of cholesterol, and their destruction is mediated by the bacterium’s cholesterol-α-glucosyltransferase.

“Showing how H. pylori persists in the midst of an acute inflammation explains a whole series of observations that have puzzled researchers for decades and has caused us to think of the infection scenario in an entirely new light” says Dr. Pau Morey, first author of the study. Dr. Francesco Boccellato, who developed the new in vitro model adds: “the mucosoids enable long-term, stable infections to be investigated – and will be an invaluable tool for examining the mechanisms underlying mucosal infections, the mucosal defence and the emergence of cancer.”


Source: Max-Planck-Institut für Infektionsbiologie

15.03.2018

Read all latest stories

Related articles

Photo

News • Breakthrough against C. diff

New Clostridioides difficile vaccine on the horizon

Researchers at the University of Exeter first identified a gene in the 'hospital bug' Clostridioides difficile responsible for producing a protein that aids in binding the bacteria to the gut of its…

Photo

News • Influential genes

Our microbiome is shaped by genetic differences in the immune system

Genetic differences in the immune system shape the collections of bacteria that colonize the digestive system, according to new research by scientists at the University of Chicago. In carefully…

Photo

News • Stealthy survivors

Tracing the evolution of E. coli

Bacteria are stealthy organisms. They can multiply in minutes and evolve to survive what we throw at them—including antibiotics. The World Health Organization calls antibiotic resistance “one of…

Related products

Siemens Healthineers – Fast Track Real-time PCR assays

Infectious Disease

Siemens Healthineers – Fast Track Real-time PCR assays

Siemens Healthcare GmbH
Beckman Coulter – Access Procalcitonin (PCT)

Immunoassays

Beckman Coulter – Access Procalcitonin (PCT)

Beckman Coulter Diagnostics
Fujifilm Wako – μTASWako i30

Immunoassays

Fujifilm Wako – μTASWako i30

FUJIFILM Wako Chemicals Europe GmbH
Mindray – CL-1000i/1200i Chemiluminescence Immunoassay System

Immunoassays

Mindray – CL-1000i/1200i Chemiluminescence Immunoassay System

Shenzhen Mindray Bio-Medical Electronics Co., Ltd
Subscribe to Newsletter