3D rendering of GFAP and COL-IV in normal cortex and glioblastoma highlight the...
3D rendering of GFAP and COL-IV in normal cortex and glioblastoma highlight the differences between normal and glioblastoma blood vessels in relation with surrounding GFAP-expressing cells

Image source: Cribaro et al, Acta Neuropathologica Communications 2021 (CC-BY 4.0)

News • Brain tumour analysis

Glioblastoma '3D maps' help find new therapies

Researchers at the Universitat Autònoma de Barcelona obtained a highly accurate recreation of human glioblastoma’s features using a novel 3D microscopy analysis.

The study, published in the journal Acta Neuropathologica Communications, provides new information to help with the diagnose, by finding therapeutical targets and designing immunotherapeutical strategies.

This local and populational differentiation [of immune cells] could be an important factor that may help diagnosis and aid in the search for new therapeutic targets

Carlos Barcia

This new analysis of 3D images and quantitative data “will help to appreciate from within how the tumor is built in its full dimensionality, and to identify where different cell types are located”, explains George Paul Cribaro, first author of the study. “It provides more complete information than the usual 2D analyses performed for neuropathological diagnosis”

With this new approach, authors show the alterations in tumor blood vessels, and that these vascular wall abnormalities do not hinder the entrance of lymphocytes T (potential defense against tumoral cells), which is relevant for the design and use of immunotherapies targeting malignant cells. Moreover, the images allow the tumor to be differentiated into two areas, the tumor tissue properly speaking, and the stroma, which gives support to the tumor, in which there are different immunological microenvironments. “Immune cells like microglia and macrophages are seen in both areas, but they are shaped by different subpopulations. This local and populational differentiation could be an important factor that may help diagnosis and aid in the search for new therapeutic targets”, indicates Carlos Barcia, coordinator of the work.

The work provides a set of resource images that will facilitate the understanding of the complexity of this tumor, showing some aspects to be considered when designing new therapeutic approaches.


Source: Universitat Autònoma de Barcelona

22.02.2021

Read all latest stories

Related articles

Photo

News • WSI-based analysis

AI-driven classification of diffuse gliomas skips molecular testing

Research from Shenzhen proposes an integrated diagnosis model for automatic classification of adult-type diffuse gliomas directly from annotation-free standard whole-slide pathological images.

Photo

News • Intratumoral approach for hard-to-treat glioma

Microdevices implanted into tumor to help treat brain cancer

A new type of microdevice could offer new ways to treat brain cancer. The shape and size of a grain of rice, it is implanted into a tumor to study the effects of ongoing therapies.

Photo

News • Neuroanatomy

Researchers create high-res 3D map of the brain

A team led by scientists from Amsterdam have combined MRI and microscopy to produce 3D images of two entire brains with a previously unmatched level of detail.

Related products

Olympus · BX53LED

Microscopy

Olympus · BX53LED

Olympus Europa SE & Co. KG
3D printed pure tungsten anti-scatter grids

Accessories / Complementary Systems

Dunlee · 3D printed pure tungsten anti-scatter grids

Dunlee – Philips Medical Systems DMC GmbH
Alphenix Biplane High Definition Detector

Bi-Plane

Canon · Alphenix Biplane High Definition Detector

Canon Medical Systems Europe B.V.
Alphenix Sky+

Single Plane

Canon · Alphenix Sky+

Canon Medical Systems Europe B.V.
Alphenix Sky+ High Definition Detector

Single Plane

Canon · Alphenix Sky+ High Definition Detector

Canon Medical Systems Europe B.V.
CliniSys · Anatomical Pathology Laboratory

Information Technology

CliniSys · Anatomical Pathology Laboratory

Clinisys Deutschland GmbH
Subscribe to Newsletter