Courtesy of Vilaiwan M Fernandes, Desplan Lab, NYU’s Department of Biology

News • Neurology

Biologists find new source for brain’s development

A team of biologists has found an unexpected source for the brain’s development, a finding that offers new insights into the building of the nervous system.

The research, which appears in the journal Science, discovered that glia, a collection of non-neuronal cells that had long been regarded as passive support cells, in fact are vital to nerve-cell development in the brain. “The results lead us to revise the often neuro-centric view of brain development to now appreciate the contributions for non-neuronal cells such as glia,” explains Vilaiwan Fernandes, a postdoctoral fellow in New York University’s Department of Biology and the study’s lead author. “Indeed, our study found that fundamental questions in brain development with regard to the timing, identity, and coordination of nerve cell birth can only be understood when the glial contribution is accounted for.”

The brain is made up of two broad cell types, nerve cells or neurons and glia, which are non-nerve cells that make up more than half the volume of the brain. Neurobiologists have tended to focus on the former because these are the cells that form networks that process information.

Photo
A confocal micrograph of a developing fruit fly visual system. Development of the retina (top) is coordinated with development of the optic lobe region of the brain (sphere below). All neurons are marked by yellow and their axon projections in cyan; magenta in the optic lobe marks the specific region of the brain where neuronal differentiation is regulated by glia.
Source: Courtesy of Vilaiwan M Fernandes, Desplan Lab, NYU’s Department of Biology

However, given the preponderance of glia in the brain’s cellular make-up, the NYU researchers hypothesized that they could play a fundamental part in brain development. To explore this, they examined the visual system of the fruit fly. The species serves as a powerful model organism for this line of study because its visual system, like the one in humans, holds repeated mini-circuits that detect and process light over the entire visual field.

This dynamic is of particular interest to scientists because, as the brain develops, it must coordinate the increase of neurons in the retina with other neurons in distant regions of the brain.

In their study, the NYU researchers found that the coordination of nerve-cell development is achieved through a population of glia, which relay cues from the retina to the brain to make cells in the brain become nerve cells. “By acting as a signaling intermediary, glia exert precise control over not only when and where a neuron is born, but also the type of neuron it will develop into,” notes NYU Biology Professor Claude Desplan, the paper’s senior author.


Source: New York University

03.09.2017

More on the subject:

Related articles

Photo

News • Photoacoustic computed tomography

A 'PACT' to monitor stroke in real-time

Researchers developed a new scanning method that combines light and ultrasound to non-invasively monitor cerebrovascular changes in the early stages of an ischemic stroke in real time.

Photo

News • Alternative to diagnostic brain imaging

Exploring the potential of blood tests for dementia diagnosis

Molecular changes associated with brain inflammation and dementia can be detected in the blood. Researchers want to use this to establish blood tests as an alternative to more costly brain scans.

Photo

News • Hyper-elevated RNAPII detection

New biomarker predicts aggressiveness of brain, breast cancer

Using a new technology and computational method, researchers have uncovered a biomarker capable of accurately predicting the aggressiveness of meningioma brain tumors and breast cancers.

Related products

Subscribe to Newsletter