Labor

Lernen von Legionellen

Forscher haben bei Legionellen einen neuen Ubiquitinierungs-Mechanismus entdeckt, der die pathogenen Effekte von Bakterien erklärt. Ivan Dikic und sein Team an der Goethe-Universität vermuten, dass er auch an vielen anderen biologischen Prozessen beteiligt ist.

Klein, aber entscheidend: Kristallstruktur von Ubiquitin (grün) und...
Klein, aber entscheidend: Kristallstruktur von Ubiquitin (grün) und modifiziertem Ubiquitin (gelb). Modifiziertes Ubiquitin enthält eine zusätzliche Phosphoribosyl-Gruppe an der Aminosäure in Position 42. Die Überlagerung beider Bilder (Mitte) verdeutlicht den kleinen, aber entscheidenden Unterschied in der dreidimensionalen Struktur des Proteins.
Quelle: Cell
Übereinander gelegte Kristallstrukturen von Ubiquitin (grün) und Ubiquitin,...
Übereinander gelegte Kristallstrukturen von Ubiquitin (grün) und Ubiquitin, welches durch das Legionellenenzym modifiziert wurde (gelb). Modifiziertes Ubiquitin enthält eine zusätzliche Phosphoribosyl-Gruppe an Aminosäure-Position 42.
Quelle: Cell

Die Markierung mit dem kleinen Molekül Ubiquitin galt lange als „Todeskuss“, durch den nicht mehr benötigte Proteine in der Zelle entsorgt werden. Doch inzwischen weiß man, dass Ubiquitin noch viele weitere Aufgaben in der zellulären Signalverarbeitung erfüllt. Ein Forscherteam unter Leitung von Prof. Ivan Dikic, Direktor des Instituts für Biochemie II an der Goethe-Universität Frankfurt, hat nun einen neuartigen Mechanismus zur Ubiquitinierung aufgeklärt, mit dem Legionellen die Steuerung ihrer Wirtszellen übernehmen können.

Nach der bisher gängigen Lehrmeinung erfordert die Anheftung von Ubiquitin an andere Proteine die konzertierte Aktion von drei Enzymen. Im April dieses Jahres beschrieben amerikanische Forscher erstmals eine Form der Ubiquitinierung, an der nur ein einziges Enzym aus Legionellen beteiligt ist. Das Team von Ivan Dikic hat nun gemeinsam mit der Gruppe von Ivan Matic (Max-Planck-Institut für Biologie des Alterns, Köln) den zugrundeliegenden molekularen Mechanismus aufgeklärt.

Verblüffend ist die bisher unbekannte Art der chemischen Verknüpfung von Ubiquitin mit Proteinen, die das Enzym aus den Legionellen herstellt. Für die Fachwelt ist das eine bahnbrechende Entdeckung. Dr. Sagar Bhogaraju, Wissenschaftler im Labor von Dikic, kommentiert: „Spannend ist nun vor allem die Frage, ob diese neuartige Ubiquitinierung auch unabhängig von bakteriellen Infektionen in menschlichen Zellen vorkommt und ob es ähnliche, bislang unentdeckte Enzyme beim Menschen gibt, die womöglich weitreichenden Einfluss auf zelluläre Prozesse haben.“

Bei der detaillierten Untersuchung des neuen Mechanismus wurden die Forscher erneut überrascht: Das Legionellen-Enzym katalysiert nicht nur die Ubiquitinierung zellulärer Proteine, es verändert außerdem alle weiteren vorhandenen Ubiquitin-Moleküle. Bei Infektionen mit Legionellen spielt diese modifizierte Form von Ubiquitin vermutlich eine wichtige Rolle, da sie das klassische Ubiquitin-System weitgehend hemmt.

Neben der „Abfallwirtschaft“ funktionieren dann auch weitere wichtige Prozesse in der Zelle nicht mehr, was für das Bakterium von entscheidendem Vorteil sein kann. So konnte das Team von Ivan Dikic zeigen, dass das modifizierte Ubiquitin die Entsorgung von Mitochondrien (Mitophagie) ebenso lahmlegt wie die Weiterleitung von Entzündungssignalen und den Abbau von Proteinen. Auf diese Weise könnten Legionellen fundamental in zelluläre Prozesse ihres Wirts eingreifen.

„Wir gehen davon aus, dass Legionellen nicht die einzigen Bakterien sind, die sich diesen Mechanismus zunutze machen. Hier könnten sich neue Strategien für die Entwicklung antibakterieller Agenzien ergeben, die komplementär zu konventionellen Antibiotika wirken und die zellulären Schäden durch bakterielle Enzyme begrenzen“, erklärt Dikic die medizinische Bedeutung der Entdeckung.


Publikation:
Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T, Matic I, Dikic I. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell. 2016 Dec;167(6). DOI 10.1016/j.cell.2016.11.019

Quelle: Goethe-Universität Frankfurt am Main

09.12.2016

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Forschung

Ohne R-loops keine gesunde Zellentwicklung

Forscher der Universität von Edinburgh haben bei der Entwicklung gesunder Zellen die Rolle entscheidender Moleküle identifiziert. Die sogenannten "R-loops" werden bei der Zellentwicklung…

Photo

Forschung

Degenerierende Nervenzellen auf Biochips

Wie reagieren lebende, genetisch veränderte Nervenzellen mit einer krankhaften Degeneration auf Wirkstoffe, die für Medikamente gegen die Alzheimer-Krankheit getestet werden? Wie viel von diesem…

Photo

Guinea

Charakteristisches Immunsignal bei Ebola-Patienten

Forscherinnen und Forscher des Heinrich-Pette-Instituts (HPI) und des Bernhard-Nocht-Instituts für Tropenmedizin (BNITM) haben erstmalig die Physiologie der menschlichen Immunantwort…

Verwandte Produkte

Agena Bioscience - MassARRAY Colon Panel

Amplification/Detection

Agena Bioscience - MassARRAY Colon Panel

Agena Bioscience GmbH
Eppendorf – BioSpectrometer fluroescence

Research Use Only (RUO)

Eppendorf – BioSpectrometer fluroescence

Eppendorf AG
Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Eppendorf – μCuvette G1.0

Research Use Only (RUO)

Eppendorf – μCuvette G1.0

Eppendorf AG