Vitalität und Aktivität der menschlichen Stammzellen, die in ein...
Vitalität und Aktivität der menschlichen Stammzellen, die in ein Alginat-Hydrogel eingebettet wurden, wird anhand ihres Sauerstoffverbrauchs sichtbar.

Quelle: Ashwini Rahul Akkineni, TU Dresden

3D Druck

Bioprinting von künstlichen menschlichen Geweben

Gedruckte Gewebskonstrukte sollen in Zukunft krankhafte oder zerstörte Gewebe von Patienten ersetzen. Ein Forscherteam der TU Dresden entwickelte gemeinsam mit Kollegen von der Universität Kopenhagen eine neue Methode, die eine zerstörungsfreie Messung der lokalen Sauerstoffkonzentration in solchen künstlichen Geweben erlaubt.

Gedruckte Gewebskonstrukte sollen in Zukunft krankhafte oder zerstörte Gewebe von Patienten ersetzen, z.B. Knorpel oder hormonproduzierendes Drüsengewebe. Eine andere wichtige Anwendung ist die Erzeugung von Krankheitsmodellen, z.B. für Tumorerkrankungen, um neue Medikamente testen zu können.

Forscher arbeiten weltweit intensiv an der Entwicklung von Methoden des Bioprinting, also dem 3D-Druck von in Biomaterialien eingebetteten Zellen, mit dem Ziel, menschliche Gewebe künstlich herzustellen. Problematisch dabei ist die Versorgung der Zellen im Inneren solcher Konstrukte; ein Mangel zum Beispiel an Sauerstoff führt zu deren schnellen Absterben. Ein Forscherteam der TU Dresden um Prof. Michael Gelinsky (Dr. Ashwini Rahul Akkineni, Dr. Anja Lode und Dr. Felix Krujatz) entwickelte gemeinsam mit Kollegen von der Universität Kopenhagen (Prof. Michael Kühl und Mitarbeiter) eine neue Methode, die eine zerstörungsfreie Messung der lokalen Sauerstoffkonzentration in solchen künstlichen Geweben erlaubt. Damit kann erstmals online der Sauerstoffgehalt in der unmittelbaren Umgebung solcher Zellen über die Zeit ermittelt werden. Diese Methode erlaubt auch die Untersuchung des Sauerstoffverbrauchs durch die Zellen – je vitaler und aktiver die Zellen sind, umso mehr Sauerstoff verbrauchen sie. Zellen der Bauchspeicheldrüse, die Insulin produzieren, oder sich zu Knochenzellen differenzierende Stammzellen haben beispielsweise einen sehr hohen Sauerstoffverbrauch.

Mit der neu entwickelten Methode kann sehr schnell und effizient getestet werden, ob neue Materialien für das Bioprinting, sog. Bioinks/Biotinten, die Vitalität und Funktion der eingebetteten Zellen in geeigneter Weise unterstützen und eine ausreichende Durchlässigkeit für Sauerstoff aufweisen, oder ob sich eingebettete Stammzellen in die gewünschte Zellsorte entwickeln.

Das Messprinzip ist sehr einfach: den Biotinten (Hydrogelmaterialien) werden kleine Nanopartikel zugesetzt, die die Zellen nicht stören. Bei Anregung mit blauem Licht emittieren diese rotes Licht, dessen Leuchtintensität abhängig von der umgebenden Sauerstoffkonzentration ist: je mehr Sauerstoff, desto niedriger ist die Intensität. Das ausgesendete Licht kann mit Hilfe einer Kamera eingefangen werden und somit entsteht ein Abbild der räumlichen Verteilung des Sauerstoffs im künstlichen Gewebe. Bilder können beliebig oft zu verschiedenen Zeitpunkten aufgenommen werden, so dass die Entwicklung über die Zeit beobachtet werden kann.

Quelle: Technische Universität Dresden

12.10.2018

Mehr zu den Themen:
Mehr aktuelle Beiträge lesen

Verwandte Artikel

Oberflächenfunktionalisierung

Passgenaue 3D-gedruckte Knochenimplantate

Tumorerkrankungen, Infektionen oder schwere Frakturen können die operative Entfernung von Knochen und den Einsatz von Implantaten notwendig machen. Fraunhofer-Forscher haben jetzt in Zusammenarbeit…

Magnetresonanztomographie

Hydraulik-Antrieb für den OP-Roboter der Zukunft

Roboter können den Arzt beim Aufspüren und Behandeln von Tumoren unterstützen, indem sie etwa eine feine Sonde an der richtigen Stelle positionieren. Damit die Robotik bildgebende Verfahren wie…

Regenerative Medizin

Neuartige Biotinte für 3D-Druck

Wissenschaftler der Julius-Maximilians-Universität Würzburg (JMU) haben ein neues Material synthetisiert, das sich als biologische Tinte für den 3D-Druck gewebeähnlicher Strukturen für die…

Verwandte Produkte

Printer

Agfa - DRYSTAR 5301

Agfa HealthCare

Printers

Agfa - DRYSTAR 5302

Agfa HealthCare

Printers

Agfa - DRYSTAR 5503

Agfa HealthCare

Printers

Agfa - DRYSTAR AXYS

Agfa HealthCare

Displays - Mammo

JVC - CCL550i2

JVCKENWOOD Deutschland GmbH

Displays - Grayscale

JVC - ME195

JVCKENWOOD Deutschland GmbH