Insbesondere KI-basierte Gesundheitslösungen, die personalisierte...
Insbesondere KI-basierte Gesundheitslösungen, die personalisierte Patientendaten nutzen, um zum Beispiel Krankheitsfälle wie Covid-19 oder Leukämie zu erkennen, können von der Methode des Swarm Learnings profitieren.

Quelle: Plattform Lernende Systeme

News • Verteiltes maschinelles Lernen

Besserer Datenschutz für KI-Anwendungen?

Künstliche Intelligenz (KI) unterstützt die Menschen in Medizin, Mobilität und im Arbeitsalltag. Grundlage für KI-Systeme ist das Training mit Daten – häufig auch personenbezogenen Informationen. Die Methode des verteilten maschinellen Lernens kann den Datenschutz bei der Entwicklung von KI-Anwendungen verbessern, da die verwendeten Daten dabei nicht zentral gebündelt werden, sondern auf den Endgeräten und damit bei den Usern verbleiben. Allerdings kann dies auch neue Angriffspunkte für Cyberkriminelle schaffen

KI-Systeme analysieren großen Mengen an – teils sensiblen – Daten. Unternehmen stellt die Entwicklung von KI-Anwendungen mithilfe personenbezogener Daten vor große rechtliche Unsicherheiten; die Hürden zur Einhaltung des Datenschutzes und des Rechts auf informationelle Selbstbestimmung sind hoch. Die Methode des verteilten maschinellen Lernens bietet eine technische Lösung, datenschutzwahrende KI-Anwendungen zu schaffen: Statt zentral auf einem Server werden Modelle des maschinellen Lernens (ML-Modelle) auf vielen Endgeräten dezentral trainiert. Somit bleiben die persönlichen Daten bei den Nutzenden.

„Verteiltes maschinelles Lernen eröffnet neue Möglichkeiten zur effektiven und skalierbaren Nutzung von Daten, ohne diese teilen zu müssen. Dadurch werden viele hilfreiche Anwendungen mit sensitiven Daten erst möglich“, so Ahmad-Reza Sadeghi, Professor für Informatik der Technischen Universität Darmstadt und Mitglied der Arbeitsgruppe IT-Sicherheit und Privacy der Plattform Lernende Systeme.

Potenzial für medizinische KI-Lösungen

Zu den aktuellen technischen Ansätzen des verteilten maschinellen Lernens zählen das Split Learning, Federated Learning und Swarm Learning. Insbesondere KI-basierte Gesundheitslösungen, die personalisierte Patientendaten nutzen, um zum Beispiel Krankheitsfälle wie Covid-19 oder Leukämie zu erkennen, können von der Methode des verteilten maschinellen Lernens profitieren.

„KI-Systeme in der Medizin können nur erfolgreich sein, wenn ihnen die zum Erreichen hoher Genauigkeit notwendigen Datenmengen zur Verfügung stehen. Verteiltes maschinelles Lernen stellt eine der wichtigsten technischen Möglichkeiten dar, um dies unter Wahrung der informationellen Selbstbestimmung des Einzelnen zu ermöglichen“, sagt Björn Eskofier, Professor für Maschinelles Lernen und Datenanalytik an der Friedrich-Alexander-Universität Erlangen-Nürnberg und Mitglied der Arbeitsgruppe Gesundheit, Medizintechnik, Pflege der Plattform Lernende Systeme.

Allerdings könne das verteilte maschinelle Lernen auch neue Einfallstore für Angreifer öffnen und möglicherweise ein trügerisches Sicherheitsgefühl erzeugen, heißt es im KI Kompakt. Wie neu entstehende Angriffsfenster geschlossen werden können, ohne die Leistungsfähigkeit einzuschränken, ist noch Gegenstand der Forschung. 

Quelle: Plattform Lernende Systeme

28.09.2022

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Artikel • Smarte Helfer

KI in der Urologie – heute und in Zukunft

Intelligente Bilderkennung, Progressions-Vorhersage, Clinical Decision Support und mehr: KI und Maschinelles Lernen verändern bereits heute die Medizin – wie werden die Technologien die Operative…

Photo

News • IT von morgen

Health Hackathon: Code, der Leben retten kann

Auf dem HealthHackathon 2019 der Xpomet Medicinale steht die Zukunft der Gesundheits-IT im Mittelpunkt. Informatiker, Ingenieure, Mediziner und Medizinstudenten, Forscher und alle, die einen Beitrag…

Photo

News • Lernende Systeme

Mit KI gegen Lungenkrebs

Krebspatienten sollen schneller von Forschungsergebnissen profitieren. Das ist das Ziel der gerade ausgerufenen Nationalen Dekade gegen Krebs des Bundesministeriums für Bildung und Forschung (BMBF).…

Verwandte Produkte

Agfa HealthCare – Enterprise Imaging Platform

Mobile RIS/PACS Viewer

Agfa HealthCare – Enterprise Imaging Platform

Agfa HealthCare
Agfa HealthCare – Rubee for AI

Artificial Intelligence

Agfa HealthCare – Rubee for AI

Agfa HealthCare
Agfa HealthCare – Xero Universal Viewer

Mobile RIS/PACS Viewer

Agfa HealthCare – Xero Universal Viewer

Agfa HealthCare
Newsletter abonnieren