Representative single-dyad T1 (A) and T*2 (B) -weighted images acquired with...
Representative single-dyad T1 (A) and T*2 (B) -weighted images acquired with the dual coil. (C) tSNR for the dual coil and (D) conventional Siemens 32-channel head coil. Note that in due to preprocessing, the data from the dual coil pairs in panel (C) are further away from each other than they actually are (c.f. panel B).

News • Physical contact research

Two people, one MRI: The science of cuddling

Researchers at Aalto University and Turku PET Centre have developed a new method for simultaneous imaging brain activity from two people, allowing them to study social interaction.

In a recent study, the researchers scanned brain activity from 10 couples. Each couple spent 45 minutes inside the MRI scanner in physical contact with each other. The objective of the study was to examine how social contact activates the brain. The results were published in the theme issue Social Interaction in Neuropsychiatry of the journal Frontiers in Psychiatry. “This is an excellent start for the study of natural interaction. People don’t just react to external stimuli, but adjust their actions moment-by-moment based on what they expect to happen next,” says Riitta Hari, emerita Professor at Aalto University.

Photo
Coil and subject setup: (A, B) Illustration of the dual coil and its arrangement in the scanner. (C, D) Subject setup inside the scanner.

Ordinary magnetic resonance imaging is used to scan one person at a time. In the device developed at Aalto University, the head coil used for regular brain scans was divided into two separate coils. This new design allows for simultaneous scanning of two brains, when the individuals are positioned close enough to each other inside the scanner. During scanning, the participants were face-to-face, almost hugging each other. When instructed by the researchers, the subjects took turns in tapping each other's lips. Looking at the brain scans, the researchers could see that the motor and sensory areas of the couples’ brains were activated.

“During social interaction, people's brains are literally synchronised. The associated mental imitation of other people's movements is probably one of the basic mechanisms of social interaction. The new technology now developed will provide totally new opportunities for studying the brain mechanisms of social interaction,” says Professor Lauri Nummenmaa from Turku PET Centre. “For example, during a conversation or problem solving, people’s brain functions become flexibly linked with each other. However, we cannot understand the brain basis of real-time social interaction if we cannot simultaneously scan the brain functions of both persons involved in social interaction,” Riitta Hari says.


Source: Aalto University

Recommended article

Photo

News • Coital research

'Sex in an MRI scanner' – the story behind an extraordinary imaging project

This Christmas marks the 20th anniversary of the publication of “Magnetic resonance imaging of male and female genitals during coitus and female sexual arousal” in The BMJ. In its first year, it picked up the IgNobel prize for medicine, and has since become one of the most downloaded BMJ articles of all time. Dr Tony Delamothe, a former editor at The BMJ, ponders on its success.

29.04.2020

Read all latest stories

Related articles

Photo

News • Myelin visualisation

New MRI procedure makes multiple sclerosis visible

The loss of myelin sheaths in the brain is a hallmark of multiple sclerosis. Swiss researchers have now developed an MRI method that maps the condition of this nerve insulation layer more accurately.

Photo

News • Medical communication

Research shows why doctors should listen more to their patients

Clinicians tend to disregard patient self-assessments for their diagnostic decisions, new research suggests – a mistake that might cause those patients unnecessary harm.

Photo

News • Imaging white matter damage

Advanced MRI detects brain changes after Covid-19

Using diffusion MRI technology, researchers in Sweden have found differences in brain tissue structure between patients with persisting symptoms after Covid-19 and healthy people.

Related products

Subscribe to Newsletter