Outsmarting the immune system

'Super-human’ red blood cells for precise drug delivery

A team of physicists from McMaster University has developed a process to modify red blood cells so they can be used to distribute drugs throughout the body, which could specifically target infections or treat catastrophic diseases such as cancer or Alzheimer’s.

The modified red blood cells are designed to circulate in the body for several weeks at a time, seeking out specific targets including bacteria, tumours or organs. The technology, described in the online edition of the journal Advanced Biosystems, solves a major problem with current drug delivery methods that use synthetic molecules and cannot reach specific targets or are rejected by the body. “We call these super-human red blood cells.  We think that they could work as the perfect stealth drug carriers which can outsmart our immune system,” explains Maikel Rheinstädter, a senior advisor on the study and professor in the Department of Physics & Astronomy at McMaster.

Photo
Researchers Maikel Rheinstädter and Sebastian Himbert from McMaster University.
Source: McMaster

The researchers have developed a method to open up the red blood cell, modify its outer cell wall, and replace its contents with a drug molecule, which would then be injected back into the body. The hybrid appears and behaves as a normal red blood cell, but has a sticky surface which can attach itself to bacteria, for example, open up and release antibiotics exactly where they are needed. 

“We have combined synthetic material with biological material and created a new structure, which has never been done before in this way,” says Sebastian Himbert, lead author and a graduate student in the Department of Physics & Astronomy at McMaster. “The entire process is very efficient and can be completed in one day in the lab,” he says.

Researchers believe this targeted delivery method could help to minimize dosages and therefore, potential side effects. This is particularly important for very potent drugs used in cancer and Alzheimer’s disease, and the treatment of infections of potentially resistant bacteria.


Source: McMaster University

16.01.2020

Read all latest stories

Related articles

Photo

Blood thinning 2.0

Developing next generation anticoagulants

A University of Leeds spin-out company has secured £3.14m to develop a next generation drug that aims to prevent blood clots forming, without the risk of bleeding present in currently available…

Photo

Blood cell disorder

Promising results for new acute porphyria treatment

Acute porphyria is a group of uncommon diseases that can cause severe, potentially life-threatening attacks of abdominal pain, nausea, vomiting and paralysis. Liver transplantation is currently the…

Photo

Blood thinners

Experts' plea for anticoagulant dosage guidelines

Rutgers researchers have found a way to reduce bleeding in patients following bariatric surgery. The study, which appeared in the journal Surgery for Obesity and Related Disorders, was conducted by…

Related products

AB Medical – V-Tube EDTA K2, K3

Blood Cell Counter

AB Medical – V-Tube EDTA K2, K3

AB Medical V-Tube
Analyticon Biotechnologogies – Hemolyzer 3 NG / Hemolyzer 5 NG

Blood Cell Counter

Analyticon Biotechnologogies – Hemolyzer 3 NG / Hemolyzer 5 NG

Analyticon Biotechnologies AG
BD Vacutainer UltraTouch Push Button Blood Collection Set

Blood Collection

BD Vacutainer UltraTouch Push Button Blood Collection Set

BD – Becton Dickinson
Beckman Coulter – DxH 520 Hematology Analyzer

Blood Cell Counter

Beckman Coulter – DxH 520 Hematology Analyzer

Beckman Coulter, Inc.
Beckman Coulter – Early Sepsis Indicator

Blood Cell Counter

Beckman Coulter – Early Sepsis Indicator

Beckman Coulter, Inc.
Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG