This disability-specific discovery approach represents a strategy for finding neuroprotective treatments for neurodegenerative diseases.
Source: pixabay

News • Gene expression

Potential path to repair MS-damaged nerves

Gene expression in specific cells and in specific regions can provide a more precise, neuroprotective approach than traditional treatments for neurological diseases. For multiple sclerosis, specifically, increasing cholesterol synthesis gene expression in astrocytes of the spinal cord can be a pathway to repair nerves that affect walking.

MS patients differ markedly from each other regarding which disability affects them the most. Inflammation strips the myelin coating from nerve cell extensions, called axons, and connections at the ends of nerves, called synapses, are lost, together disrupting signaling and eventually causing permanent disability depending on where this occurs. UCLA researchers proposed that molecular mechanisms behind each disability may differ, and that neuroprotective treatments tailored for each disability may be more effective than nonspecific treatments aiming to reduce a composite of different disabilities. The team focused on astrocytes, a type of brain cell that becomes activated in MS and plays several important roles in disease, examining gene expression in astrocytes in different regions.

Decrease in cholesterol synthesis gene expression

Working with a mouse model of MS, the research team assessed astrocytes in various regions of the brain and spinal cord known to be involved in walking, vision or cognition. They compared gene expression changes between regions that correspond to different disabilities. In the spinal cord – an area that’s critical for walking – they found a decrease in the expression of cholesterol synthesis genes. Cholesterol does not leave the blood and enter the brain, instead it is made in astrocytes and plays a role in making myelin, the nerve coating, and synapses, the nerve connections. They hypothesized that while inflammation causes loss of myelin and synapses, it is the decrease in cholesterol synthesis gene expression in astrocytes that explains why lesions do not repair in MS. They treated MS mice with a drug that increased expression in cholesterol synthesis genes – and this resulted in improved walking ability.

This disability-specific discovery approach represents a strategy for finding neuroprotective treatments for neurodegenerative diseases that are tailored to repair damage for each disability, one at a time, in contrast to a “one size fits all” treatment approach.


Source: University of California, Los Angeles (UCLA), Health Sciences

27.12.2017

Read all latest stories

Related articles

Photo

News • Prevention of toxic DNA lesions

Promising mechanism to stop Huntington's progression

A new mechanism that stops the progression of Huntington’s disease in cells has been identified by scientists at the University of Cambridge and University College London (UCL), as part of their…

Photo

News • Promising preclinical study results

Epilepsy: Gene therapy shows long-term suppression of seizures

Teams of researchers from Charité – Universitätsmedizin Berlin and the Medical University of Innsbruck have developed a new therapeutic concept for the treatment of temporal lobe epilepsy. It…

Photo

News • Inherited neuromuscular disease HSP

Genetic cause for hereditary spastic paraplegia identified

Scientists at St George’s, University of London, in collaboration with researchers from Germany, the USA, Tunisia and Iran have identified a new gene associated with the neuromuscular disorder,…

Related products

Alphenix Biplane High Definition Detector

Bi-Plane

Canon · Alphenix Biplane High Definition Detector

Canon Medical Systems Europe B.V.
CliniSys – Genetics Laboratory

LIS / Middleware / POCT

CliniSys – Genetics Laboratory

Clinisys Deutschland GmbH
Magnetom Amira

1.5 Tesla

Siemens Healthineers · Magnetom Amira

Siemens Healthcare GmbH
MolGen – PurePrep 96

Extraction

MolGen – PurePrep 96

MolGen
Subscribe to Newsletter