City of Hopes Saswati Chatterjee (left), Ph.D., discovered a gene-editing...
City of Hope's Saswati Chatterjee (left), Ph.D., discovered a gene-editing technology that could efficiently and accurately correct the genetic defects that underlie certain diseases.

Credit: City of Hope

News • Genome-editing

New platform could be the next generation of genetic medicine

A scientist has discovered a gene-editing technology that could efficiently and accurately correct the genetic defects that underlie certain diseases, positioning the new tool as the basis for the next generation of genetic therapies.

“Our editing platform provides a new tool for the precise correction of genetic mutations."

Saswati Chatterjee

This editing platform, discovered by City of Hope’s Saswati Chatterjee, Ph.D., eventually may be used to cure inherited and acquired diseases. “Our editing platform provides a new tool for the precise correction of genetic mutations in this rapidly growing field,” said Chatterjee, senior author of the new study and a professor in the Department of Surgery at City of Hope. “Think of it as swapping out a mutated gene for a healthy gene to correct genetic mutations.”
 
The proof-of-concept study spotlights a promising new gene-editing platform that may eventually be used to treat diseases such as sickle cell disease, hemophilia (a condition that reduces the ability of blood to clot) and other genetic disorders, Chatterjee said.
 
This genome-editing platform, tested using human blood and tissue as well as in preclinical models, is based on a family of nondisease-causing viruses known as adeno-associated viruses (AAV). “Although injecting viruses into humans may sound alarming, a large portion of the population already has been exposed to AAV with no harmful consequences in their normal life,” Chatterjee said.

“The potential of altering the course of genetic diseases is immense."

Yuman Fong

Chatterjee’s research group isolated a subgroup of AAV known as AAVHSCs, which originate from human blood stem cells. The team discovered that AAVHSCs have the ability to efficiently deliver corrective DNA sequences to the nuclei of targeted cells in the body. Through a process called homologous recombination, these corrective sequences replace disease-causing genetic mutations in the genome. Since the therapeutic correction is at the genome level, it should lead to lifelong correction. “We found that AAVHSC-based editing vectors can efficiently edit the genome following a single administration,” Chatterjee said. “We hope to use these properties to develop widespread and accessible genome editing used to treat genetic diseases around the world.”
 
The editing platform works efficiently in stem cells and mature cells, including adult liver and muscle cells. Successful utilization of AAV has the potential to change the world of gene editing, said Yuman Fong, M.D., co-author of the study and the Sangiacomo Family Chair in Surgical Oncology at City of Hope. “We at City of Hope are attempting to build the foundation for another landmark treatment, like we did for synthetic human insulin,” Fong said. “The potential of altering the course of genetic diseases is immense. Pairing the right AAV with blood stem cells is going to be an instrumental technique for precision medicine, the next frontier of medical treatment.”
 
Source: City of Hope

20.07.2018

Related articles

Photo

News • Hard to treat cancers

KRAS “degrader” could lead to treatment for millions of cancer patients

A newfound molecule, called ACBI3, could potentially lead to new therapies against hard-to-treat cancers, improving outcomes for all patients with cancers caused by KRAS mutations.

Photo

News • Neurometabolism

Huntington: New insights into disease progression

Researchers discovered a gene that might be a key factor in the progression of Huntington’s disease in organoids. The gene may contribute to brain abnormalities much earlier than previously thought.

Photo

News • Noninvasive fetal screening

Blood test to identify genetic diseases in unborn babies

A research team from Denmark has developed an innovative screening test. With a blood sample from the expectant mother, they can scrutinize all the genes in the fetus.

Related products

Subscribe to Newsletter