Processing a lung tumor sample
Processing a lung tumor sample

Image source: University of Helsinki/Photo: Emmy Verschuren

News • Functional diagnostics

New assay could advance personalized cancer treatment

A new study from the University of Helsinki shows that cells that are freshly isolated from lung cancers can be used to create robust drug response data.

This approach can identify actionable or non-responsive treatments, illustrated by a case study in which the assay was used to guide the compassionate treatment of a patient. 

Each cancer tissue is unique, complicating treatment decisions. The power of precision medicine to match treatments to and individual patient is therefore evident. Yet, its actual success in the clinic has remained limited, particularly for solid tumors. Lung cancer is the most common cancer worldwide and has a poor prognosis compared to other cancer types. Based on genetic mutation analyses, matched treatments can be identified for around a third of patients with non-small cell lung cancer, but only just over half of all patients benefit from such gene-matched treatments. One of the issues is the lack of diagnostically interpretable assays that can identify the most promising treatment for a particular cancer. To overcome this challenge, a research team led by Emmy Verschuren from the Institute for Molecular Medicine Finland FIMM, University of Helsinki, validated an assay to enable drug response measurements in lung cancer samples immediately following surgery. Their promising approach has just been published in the journal Cell Reports Medicine.

[Tumor] tissue is extremely fragile, and biological changes are increasingly pronounced with time elapsed since the surgery

Emmy Verschuren

For patients with hematological malignancies, the FIMM precision cancer medicine efforts and collaborating teams have made great progress on matching individualized therapies to patients via the analysis of patient-derived blood samples. However, for solid epithelial tumors, these methods cannot simply be adopted. According to Dr. Verschuren, there still is a great need for robust diagnostic cell models since the presently available models take long times to be established, and importantly, do not guarantee the expansion of malignant cells. “We have invested many years of research to understand whether tumor tissue can be used to obtain reliable data. Not surprisingly, we learned that tissue is extremely fragile, and biological changes are increasingly pronounced with time elapsed since the surgery”, says Dr. Emmy Verschuren.

In their recent proof-of-concept study in collaboration with Professor Krister Wennerberg from the University of Copenhagen, her group aimed to develop an alternative approach to circumvent these challenges. The team set out to assess whether uncultured tumor cell populations could be used for drug profiling, immediately following their isolation. The research findings demonstrate the utility of what the researchers called Fresh Uncultured Tumor Cells, or FUTCs. The team tested the method by profiling twenty non-small cell lung cancer patient samples. The drug screening panel used contained 66 lung cancer-selective drugs. Their results demonstrated that robust drug response data was generated in 19 of 20 patient cases. Genetic cancer mutation analyses and the drug sensitivity data were well aligned, providing further support for the validity of the approach.

The promise of FUTC-based functional approach was also demonstrated via real-world translation, through compassionate treatment of a patient with refractory metastatic non-small cell lung cancer, per the patient’s request. The patient received clinical benefit from the treatment with three drugs selected based on the screening results. “The FUTC assay enables pharmacological testing of cancer cells in around 72 hours after sample collection and thus offers a possibility to impact treatment decision in the clinic, in an individualized manner”, says the first author of the study, Sarang Talwelkar from FIMM.

FUTC-based diagnostics could additionally help to predict clinical non-responses to highly-priced targeted therapies to decrease their considerable costs. “While it remains early days, and further investigation is warranted to test FUTC profiling on biopsies, we are hopeful that our assay can increasingly benefit patients with recurrent lung cancer”, says Dr. Verschuren. “In addition, it will be intriguing to see what we may learn by broader adaptation of the approach to other cancer types”, adds Prof. Wennerberg.


Source: University of Helsinki

18.08.2021

Read all latest stories

Related articles

Photo

Article • AI-based personalized medical care

I³lung: EU launches lung cancer initiative

This summer, The European Commission launched I3lung, a new research initiative as a part of Horizon Europe, the EU’s research and innovation program. This research initiative aims to create a…

Photo

News • Bioprinting in cancer

3D printing patient-specific tumours

Bowel cancer patients could in future benefit from a new 3D bioprinting technology which would use their own cells to replicate the complex cellular environment of solid tumours in 3D models.

Photo

News • Lung adenocarcinoma

Therapeutic target against common lung cancer identified

A new study led by researchers in Barcelona has determined the protein TIMP-1 as a valuable biomarker for the progression of lung adenocarcinoma. The results open the door to new treatments.

Related products

Beckman Coulter – Access 2 Immunoassay System

Immunoassays

Beckman Coulter – Access 2 Immunoassay System

Beckman Coulter Diagnostics
Beckman Coulter – Access Procalcitonin (PCT)

Immunoassays

Beckman Coulter – Access Procalcitonin (PCT)

Beckman Coulter Diagnostics
Beckman Coulter – Psychiatry Antipsychotic Assays

Clinical Chemistry

Beckman Coulter – Psychiatry Antipsychotic Assays

Beckman Coulter Diagnostics
DRG Instruments – DRG:Hybrid-XL

Immunochemistry

DRG Instruments – DRG:Hybrid-XL

DRG Instruments GmbH
Subscribe to Newsletter