Macrophages (grey) attacking tumor cells (green)
Macrophages (grey) attacking tumor cells (green)

© Manfred Ogris, Magdalena Billerhart, University of Vienna

News • Cancer research

How to break through a tumor's protective shield

A team at the Department for Pharmaceutical Sciences at the University of Vienna developed a therapy concept that could stop tumor growth.

The immune system protects the body from cancer. To protect healthy body cells from its own immune system, they have developed a protective shield: the protein CD47 is a so called "don’t eat me" signal, which tells the immune cells to stand back. Tumor cells exploit this CD47-based protection strategy for evading the immune system, by increasing presentation of CD47 on their cell surface. At the University of Vienna's Department for Pharmaceutical Sciences, a team led by Manfred Ogris developed a therapy concept for programming the tumor cells to produce on their own a CD47-blocking and immune-activation fusion protein. This therapy approach could stop tumor growth.

The researchers present their findings in the journal Molecular Therapy Oncolytics.

Photo

© Manfred Ogris, Magdalena Billerhart, University of Vienna

On phagocytic cells, also called macrophages, and other immune cells the ligand for CD47, namely SIRPa, can be found. When SIRPα binds to CD47, this triggers a signal which prevents the killing of the target cell. Most tumor cells also produce high amounts of CD47 and hence prevent being attacked by immune cells. Current tumor therapies using antibodies could block CD47 and at the same time activate immune cells. Nevertheless, serious side effects to healthy organs and blood cells limit this approach.

The novel therapy concept presented here ensures that tumor cells on their own produce a CD47-blocking and immune activating protein. For this, scientists introduced a DNA gene vector into the tumor cells. DNA sequences were designed to ensure the expression of a protein with maximized CD47-blocking and immune activating properties. After successful DNA transfer, tumor cells produced and secreted the protein into the tumor vicinity.

Results: CD47 was successfully blocked not only on tumors cells producing the fusion protein but also on the tumor cells in their vicinity. Tumor growth was stopped and one third of tumors were eradicated, when applying this therapy in an in vivo model of highly malignant human breast cancer. "We observed a tumor infiltration of macrophages, which was due to the therapy. Also, other immune cells recognized and destroyed tumors cells marked with fusion protein. We were relieved, that we did not observe any organ related toxicities", Manfred Ogris explains. "Next we aim at a further optimization of this approach, which should enable further preclinical studies paving the way for a potential new tumor therapy." 


Source: University of Vienna

15.10.2021

Read all latest stories

Related articles

Photo

Article • AI-based personalized medical care

I³lung: EU launches lung cancer initiative

This summer, The European Commission launched I3lung, a new research initiative as a part of Horizon Europe, the EU’s research and innovation program. This research initiative aims to create a…

Photo

News • Oncology forecast

Is Europe facing a 'cancer epidemic' in the next decade?

With an estimated one million cancer diagnoses missed across Europe in the last two years, the impact of the Covid-19 pandemic is predicted to set back European cancer outcomes by almost a decade.

Photo

News • Possible biological explanation found

Why are dense breasts associated with increased cancer risk?

The risk of developing breast cancer is higher in breasts with high density. But why is that? Researchers at Linköping University have shown major biological differences that promote cancer growth.

Related products

Canon – Alphenix 4D CT

Multi-Modality Suites

Canon – Alphenix 4D CT

Canon Medical Systems Europe B.V.
Canon - Aquilion Exceed LB

Oncology CT

Canon - Aquilion Exceed LB

Canon Medical Systems Europe B.V.
Canon – Aquilion LB

Oncology CT

Canon – Aquilion LB

Canon Medical Systems Europe B.V.
Canon – Vitrea Advanced Visualization

Reading

Canon – Vitrea Advanced Visualization

Canon Medical Systems Europe B.V.
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Subscribe to Newsletter