Histological staining of a lung adenocarcinoma, which is made of tumor cells as...
Histological staining of a lung adenocarcinoma, which is made of tumor cells as well as cells of the immune microenvironment including tumor-associated neutrophils.

Credit: Caroline Contat (EPFL)

Neutrophil

Glucose is the key for lung cancer resistance

Lung tumors are home to immune cells that affect their growth and resistance to treatment. Looking at neutrophils, scientists led by EPFL have discovered that the key might lie in the cells’ ability to metabolize glucose, opening an entirely new target for improving radiotherapy.

Cancers are not only made of tumor cells. In fact, as they grow, they develop an entire cellular ecosystem within and around them. This "tumor microenvironment" is made up of multiple cell types, including cells of the immune system, like T lymphocytes and neutrophils.

The tumor microenvironment has predictably drawn a lot of interest from cancer researchers, who are constantly searching for potential therapeutic targets. When it comes to the immune cells, most research focuses on T lymphocytes, which have become primary targets of cancer immunotherapy—a cancer therapy that turns the patient's own immune system against the tumor.

But there is another type of immune cell in the tumor microenvironment whose importance in cancer development has been overlooked: neutrophils, which form part of the body's immediate or "innate" immune response to microbes. The question, currently debated among scientists, is whether neutrophils help or inhibit the tumor's growth.

Now, a team of researchers led by Etienne Meylan at EPFL's School of Life Sciences has discovered that the metabolism of neutrophils determines their tumor-supportive behavior in lung cancer development. The study is published in Cancer Research, a journal of the American Association for Cancer Research.

Tumor-associated neutrophils taking up glucose, represented by the donut. This...
Tumor-associated neutrophils taking up glucose, represented by the donut. This enables neutrophils to become older in lung tumors, and be tumor-supportive.

Credit: Liloon (Julie de Meyer)

What intrigued the scientists was that cell metabolism in cancer becomes deregulated. Being neutrophil specialists, they considered the possibility that when these cells reside within the tumor microenvironment, their metabolism may also change, and that could affect how they contribute to the cancer's growth.

Focusing on glucose metabolism in a genetically engineered mouse model of lung adenocarcinoma, the scientists isolated tumor-associated neutrophils (TANs) and compared them to neutrophils from healthy lungs.

What they found was surprising: the TANs take-up and metabolize glucose much more efficiently than neutrophils from healthy lungs. The researchers also found that TANs express a higher amount of a protein called Glut1, which sits on the cell's surface and enables increased glucose uptake and use.

To understand the importance of Glut1 in neutrophils during lung tumor development in vivo, we used a sophisticated system to remove Glut1 specifically from neutrophils," says Pierre-Benoit Ancey, the study's first author. "Using this approach, we identified that Glut1 is essential to prolong neutrophil lifespan in tumors; in the absence of Glut1, we found younger TANs in the microenvironment."

Using X-ray microtomography to monitor adenocarcinomas, the researchers found that removing Glut1 from TANs led to lower tumor growth rate but also increased the efficacy of radiotherapy, a common treatment for lung cancer. In other words, the ability of TANs to metabolize glucose efficiently seems to bestow the tumor with the ability to resist treatment—at least in lung cancer.

The scientists think that, because Glut1 loss diminishes the lifespan of TANs, their "age" determines whether they play a pro- or anti-tumor role. "Usually, we don't know how to target neutrophils, because they are so important in innate immunity," says Etienne Meylan. "Our study shows that their altered metabolism in cancer could be a new Achilles heel to consider in future treatment strategies. Undoubtedly, we are only beginning to learn about these fascinating cells in cancer."

Source: École Polytechnique Fédérale de Lausanne

23.03.2021

Read all latest stories

Related articles

Photo

Personalized treatment

Could B cells turn the tide in sarcoma immunotherapy?

How can the treatment of soft tissue sarcomas, these particularly resistant and aggressive forms of cancer, be improved and better personalized? An international team led by Wolf Hervé Fridman with…

Photo

New cause for tumor spread found

Blood vessels produce growth factor that promotes metastases

Scientists from the German Cancer Research Center (DKFZ) and the Medical Faculty Mannheim, Heidelberg University, have identified a new growth factor produced by blood vessels that enables tumor…

Photo

Functional diagnostics

New assay could advance personalized cancer treatment

A new study from the University of Helsinki shows that cells that are freshly isolated from lung cancers can be used to create robust drug response data. This approach can identify actionable or…

Related products

Beckman Coulter – Access Procalcitonin (PCT)

Immunoassays

Beckman Coulter – Access Procalcitonin (PCT)

Beckman Coulter Diagnostics
Beckman Coulter – Prostate Health Index (phi)

Immunochemistry

Beckman Coulter – Prostate Health Index (phi)

Beckman Coulter Diagnostics
FUJIFILM Wako - Autokit CH50 Assay

Clinical Chemistry

FUJIFILM Wako - Autokit CH50 Assay

Wako Chemicals GmbH
FUJIFILM Wako - μTASWako i30

Immunoassays

FUJIFILM Wako - μTASWako i30

Wako Chemicals GmbH