Image source: Dietz et al., JCI Insight 2021 (CC BY 4.0)

AI-enhanced imaging

Detecting Diabetes with Whole-Body MRI

Type 2 diabetes can be diagnosed with a whole-body magnetic resonance imaging (MRI) scan. This is shown by a current study by researchers from the German Center for Diabetes Research, the Institute of Diabetes Research and Metabolic Diseases of Helmholtz Zentrum München at the University of Tübingen, the Max Planck Institute for Intelligent Systems and Tübingen University Hospital.

They used deep learning methods and data from more than 2000 MRIs to identify patients with (pre-) diabetes. The results have now been published in the journal JCI Insight.

Photo
Gradient maps visualizing voxels with large influence on the classification/regression outcome. The panel shows gradient maps for diabetes, computed for 50, randomly selected, persons with prediabetes. The body scans, as well as the gradient maps, were averaged along the coronal projection to generate two-dimensional representations.

Image source: Dietz et al., JCI Insight 2021 (CC BY 4.0)

Being overweight and having a lot of body fat increase the risk of diabetes. However, not every overweight person also develops the disease. The decisive factor is where the fat is stored in the body. If fat is stored under the skin, it is less harmful than fat in deeper areas of the abdomen (known as visceral fat). How fat is distributed throughout the body can be easily visualized with whole-body magnetic resonance imaging. "We have now investigated whether type 2 diabetes could also be diagnosed on the basis of certain patterns of body fat distribution using MRI," said last author Prof. Robert Wagner, explaining the researchers' approach. 

To detect such patterns, the researchers used artificial intelligence (AI). They trained deep learning (machine learning) networks with whole-body MRI scans of 2,000 people who had also undergone screening with the oral glucose tolerance test (abbreviated OGTT). The OGTT can screen for impaired glucose metabolism and diagnose diabetes. This is how the AI learned to detect diabetes. "An analysis of the model results showed that fat accumulation in the lower abdomen plays a crucial role in diabetes detection," Wagner said.  Further additional analysis also showed that a proportion of people with prediabetes, as well as people with a diabetes subtype that can lead to kidney disease, can also be identified via MRI scans. 

The researchers are now working to decipher the biological regulation of body fat distribution. One goal is to identify the causes of diabetes through new methods such as the use of AI in order to find better preventive and therapeutic options.


Source: German Center for Diabetes Research

13.10.2021

Read all latest stories

Related articles

Photo

Imaging assistance

Deep learning method boosts MRI results without new data

When patients undergo an MRI, they are told to lie still because even the slightest movement compromises the quality of the images and can create blurred spots and speckles known as artifacts.…

Photo

Incidental findings identification

AI system for brain MRIs could boost workflows

An artificial intelligence (AI)-driven system that automatically combs through brain MRIs for abnormalities could speed care to those who need it most, according to a new study. “There are an…

Photo

AI-assisted MRI segmentation

Deep learning boost for prostate cancer workflow

Prostate cancer radiotherapy treatments guided by MRI are increasingly being explored to help improve patient outcomes and reduce toxicities after treatment. However, this development is being held…

Related products

Canon – Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon – Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
Canon - Vantage Elan NX Edition

1.5 Tesla

Canon - Vantage Elan NX Edition

Canon Medical Systems Europe B.V.
allMRI GmbH – Foldable MRI wheelchair

Accessories / Complementary systems

allMRI GmbH – Foldable MRI wheelchair

allMRI GmbH
allMRI GmbH · Mobile MRI procedure lamp

Accessories/ Complementary Systems

allMRI GmbH · Mobile MRI procedure lamp

allMRI GmbH
allMRI GmbH – MRI doppler ultrasound gating device

Accessories/ Complementary Systems

allMRI GmbH – MRI doppler ultrasound gating device

allMRI GmbH
allMRI GmbH – MRI safe metal free cleaning tool set

Accessories/ Complementary Systems

allMRI GmbH – MRI safe metal free cleaning tool set

allMRI GmbH
Subscribe to Newsletter