Molekulare Störenfriede

Wie Proteine Kommunikation zwischen Bakterien verhindern

Schleimig sind sie, doch für Mikroorganismen eine geradezu gemütliche Umgebung: Biofilme. Vor äußeren Einflüssen geschützt, können Bakterien dort ungestört wachsen und Krankheiten auslösen. Wissenschaftlerinnen der Christian-Albrechts-Universität zu Kiel (CAU) erforschen, wie bereits die Entstehung von Biofilmen verhindert werden kann. Darauf basierend könnten Alternativen zu Antibiotika entwickelt werden, gegen die viele Krankheitserreger häufig bereits resistent sind. Die Studie zeigt, dass Strategien aus der Natur besonders wirksam sind, um Biofilme zu unterbinden.

Mikroskopische Aufnahmen von in Durchflusszellen gebildeten Biofilmen von...
Mikroskopische Aufnahmen von in Durchflusszellen gebildeten Biofilmen von Klebsiella oxytoca. Das Protein QQ-2 führt zu einer erheblich reduzierten Biofilmbildung im Vergleich zur Kontrolle.
Quelle: Nancy Weiland-Bräuer
Ruth A. Schmitz-Streit und Nancy Weiland-Bräuer untersuchen, wie die...
Ruth A. Schmitz-Streit und Nancy Weiland-Bräuer untersuchen, wie die Kommunikation zwischen Zellen mithilfe von „Quorum quenching“-Proteinen gestört werden kann.
Quelle: Christian-Albrechts-Universität zu Kiel/Julia Siekmann

Um sich auf Oberflächen zu Zellansammlungen zusammen zu lagern, müssen Bakterien über Signalmoleküle (sogenannte „Autoinducer“) miteinander kommunizieren. Wird diese Kommunikation unterbrochen, kann sich kein Biofilm bilden. Diese Zell-Zell-Kommunikation, das sogenannte „Quorum sensing“ (QS), kann durch störend eingreifende Biomoleküle („Quorum quenching“-Proteine, QQ) beeinflusst werden. „Proteine können diese Signalmoleküle abbauen oder so modifizieren, dass sie nicht mehr funktionsfähig sind“, erklärt Schmitz-Streit. Ziel der vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Studie war es deshalb, QQ-Proteine zu finden, die diese Kommunikation zwischen Bakterien möglichst wirksam stören.

Im Gegensatz zu bisherigen Forschungen konzentrierten sich Professorin Ruth Schmitz-Streit und Dr. Nancy Weiland-Bräuer, ebenfalls CAU, bei ihrer Suche auf natürliche Umgebungen außerhalb des Labors. „Denn Prinzipien, die in der Natur vorkommen, haben sich evolutionär über einen langen Zeitraum entwickelt und durchgesetzt. Dadurch sind sie besonders wirkungsvoll“, so Schmitz-Streit. Das zeigte das Forschungsteam mit einem metagenomischen Ansatz: Sie entnahmen Proben aus Meerwasser, aus Gletschern, aber auch von Quallen oder aus Biofilmrückständen in einer Waschmaschine. Daraus extrahierten sie die Gesamt-DNA und suchten davon ausgehend Proteine mit der Fähigkeit, Signalmoleküle abzubauen oder unwirksam zu machen.

Schmitz-Streit und Weiland-Bräuer stellten dabei fest, dass die Anzahl von QQ-Proteinen, die eine Zell-Zell-Kommunikation verhindern können, in den untersuchten marinen Umwelt-Proben tatsächlich enorm hoch ist – höher als bei terrestrischen Proben. „Das marine System rund um Meer, Wasser oder Algen ist als das älteste Ökosystem besonders reichhaltig an neuen, noch unentdeckten Substanzen. Hierin steckt ein großes Potenzial von biologischen Aktivitäten und QQ-Mechanismen“, so Schmitz-Streit.

Die Forschungsgruppe fand noch mehr: Das kommunikationsstörende Protein QQ-2 zeigte sich in den Untersuchungen als besonders wirksam. „Dieses Protein ist sehr robust und kann viele verschiedene Biofilme verhindern“, erklärt Weiland-Bräuer. Frühere Studien konzentrierten sich eher darauf, eine bestimmte Sprache von Bakterien zu stören. „Das QQ-2-Protein ist dagegen auf eine ‚Universalsprache‘ ausgerichtet und kann die Kommunikation von verschiedenen Bakterien stören. Es ist also ein ‚genereller Störenfried‘.“

Diese Grundlagenforschung liefert wichtige Erkenntnisse für eine mögliche biotechnologische und medizinische Anwendung in der Zukunft. Kann die Kommunikation von pathogenen Bakterien bewusst gestört werden, hindert das die Bakterien daran, in Biofilmen zu wachsen und Krankheiten auszulösen. Angesichts der steigenden Antibiotikaresistenz von Krankheitserregern könnte die hohe Wirksamkeit von natürlichen QQ-Mechanismen ein wirkungsvoller Ansatz in der Entwicklung von Medikamenten sein.


Originalpublikation:
Weiland-Bräuer, N., Kisch, M., Pinnow, N., Liese, A., Schmitz, R.A.: „Highly effective inhibition of biofilm formation by the first 1 metagenome-derived AI-2 quenching enzyme.” Frontiers in Microbiology, 13 July 2016. DOI: 10.3389/fmicb.2016.01098; http://journal.frontiersin.org/article/10.3389/fmicb.2016.01098/full

Quelle: Christian-Albrechts-Universität zu Kiel

01.08.2016

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Wirkmechanismus von Darobactin entschlüsselt

Neues Antibiotikum überlistet Bakterien mit Mimikry

Immer mehr bakterielle Krankheitserreger sind gegen Antibiotika resistent. Dabei haben die gefährlichsten Keime eines gemeinsam: Sie verfügen über eine doppelte Membran, die schwer zu durchdringen…

Photo

Interaktionen erforscht

Was passiert, wenn SARS-CoV-2 Zellen befällt?

Wissenschaftler aus Würzburg und den USA haben den ersten vollständigen Atlas der direkten Interaktionen zwischen dem neuen Coronavirus und den von ihm befallenen Zellen erstellt. Dies eröffnet…

Photo

Mikrobialer Widerstand

Resistente Erreger auch ohne Antibiotika möglich

Bakterien sind immer häufiger resistent gegen die gängigen Antibiotika. Vermittelt werden die Resistenzen häufig durch Resistenzgene, welche von einer Bakterienpopulation zur nächsten springen…

Verwandte Produkte

FUJIFILM Wako - Autokit CH50 Assay

Clinical Chemistry

FUJIFILM Wako - Autokit CH50 Assay

Wako Chemicals GmbH
FUJIFILM Wako - Toxinometer MT-6500

Identification/Susceptibility

FUJIFILM Wako - Toxinometer MT-6500

FUJIFILM Wako Chemicals Europe GmbH
Hund – medicus plus Myko

Microscopy

Hund – medicus plus Myko

Helmut Hund GmbH
Mindray – BC-6200 / 6000 Auto Hematology Analyzer

Blood Cell Couner

Mindray – BC-6200 / 6000 Auto Hematology Analyzer

Shenzhen Mindray Bio-Medical Electronics Co., Ltd
Olympus – CX33

Microscopy

Olympus – CX33

Olympus Europa SE & Co. KG
Newsletter abonnieren