Bestimmung der Tumor-infiltrierenden Lymphozyten (TiLs) mithilfe der...
Bestimmung der Tumor-infiltrierenden Lymphozyten (TiLs) mithilfe der Explainable-AI-Technologie. Ergebnis des KI-Verfahrens ist eine Heatmap, in der TiLs in rot und sonstiges Gewebe und Zellen in blau und grün markiert sind

Grafik: Klauschen/Charité

Brustkrebs-Diagnostik

Neues System soll KI-Diagnose erklärbar machen

Forschende der Charité – Universitätsmedizin Berlin und der TU Berlin haben ein neues Analyse-System für die Brustkrebsdiagnostik anhand von Gewebeschnitten entwickelt, das Künstliche Intelligenz (KI) nutzt.

Zwei Weiterentwicklungen machen das System einzigartig: Zum einen integriert es erstmals morphologische, molekulare und histologische Daten in einer Auswertung. Zum zweiten liefert es eine Erklärung des KI-Entscheidungsprozesses in Form von Heatmaps mit. Dadurch können Ärztinnen und Ärzte das Ergebnis der KI-Analyse nachvollziehen und auf Plausibilität prüfen. Künstliche Intelligenz wird damit erklärbar – ein entscheidender und unabdingbarer Schritt nach vorn, will man KI-Systeme künftig im Klinik-Alltag zur Unterstützung der Medizin einsetzen. Die Forschungsergebnisse wurden jetzt in Nature Machine Intelligence veröffentlicht.

Es fehlte bislang die entscheidende Brücke zwischen den Bildgebungsdaten und den hochdimensionalen molekularen Daten

Klaus-Robert Müller

Krebsmedizin beschäftigt sich zunehmend mit der molekularen Charakterisierung von Tumorgewebeproben. Ermittelt wird dabei unter anderem der Methylierungszustand der DNA, die Genexpression, somatische Mutationen oder auch die Protein-Expression in den pathologischen Präparaten. Gleichzeitig setzt sich die Erkenntnis durch, dass die Krebsprogression eng mit der Verbindung von Krebszellen untereinander und der Interaktion mit dem umgebenden Gewebe – einschließlich des Immunsystems – zusammenhängt. Während mikroskopische Techniken die Untersuchung biologischer Prozesse mit hoher räumlicher Auflösung erlauben, können molekulare Marker mikroskopisch nur begrenzt erhoben werden. Sie werden vielmehr anhand von aus Gewebeproben extrahierten Proteinen oder DNA ermittelt. Als Folge erlauben sie meist keine räumliche Auflösung, und daher ist ihr Zusammenhang mit den mikroskopischen Strukturen typischerweise unklar. Diese Probleme konnte ein interdisziplinäres Forschungsteam jetzt mithilfe von KI lösen.

„Bei Brustkrebs ist bekannt, dass die Zahl eingewanderter Immunzellen, der sogenannten Lymphozyten, im Tumorgewebe einen Einfluss auf die Prognose der Patientin hat. Zusätzlich wird diskutiert, ob diese Zahl auch einen prädiktiven Wert hat – also Aussagen darüber ermöglicht, wie gut welche Therapie anschlägt“, sagt Prof. Dr. Frederick Klauschen vom Institut für Pathologie der Charité.  „Das Problem: Wir haben gute und belastbare molekulare Daten und gute, räumlich hochaufgelöste histologische Daten. Aber es fehlte bislang die entscheidende Brücke zwischen den Bildgebungsdaten und den hochdimensionalen molekularen Daten“, ergänzt Prof. Dr. Klaus-Robert Müller, Professor für Maschinelles Lernen an der TU Berlin. Die beiden Wissenschaftler kooperieren bereits seit mehreren Jahren unter dem Dach des nationalen KI-Kompetenzzentrums Berlin Institute for the Foundations of Learning and Data (BIFOLD), das an der TU Berlin beheimatet ist.

Histologisches Präparat (Hematoxylin-Eosin-Färbung) eines Mammakarzinoms
Histologisches Präparat (Hematoxylin-Eosin-Färbung) eines Mammakarzinoms

Grafik: Klauschen/Charité

In dem jetzt veröffentlichten Ansatz gelang genau diese Symbiose. „Unser System ermöglicht die robuste Erkennung von pathologischen Veränderungen in mikroskopischen Bildern. Parallel dazu liefern wir eine präzise Heatmap-Visualisierung, die zeigt, welcher Pixel auf dem mikroskopischen Bild in welchem Maße zu der Diagnose des Algorithmus beigetragen hat“, erläutert Prof. Müller. Zusätzlich haben die Forschenden das Verfahren noch einen großen Schritt weiterentwickelt: „Unser Analysesystem wurde mithilfe von maschinellen Lernverfahren so trainiert, dass es auch verschiedene molekulare Merkmale, wie zum Beispiel die DNA-Methylierung, die Genexpression oder auch die Protein-Expression in bestimmten Bereichen des Gewebes aus den histologischen Bildern vorhersagen kann.“

Als nächstes stehen die Zertifizierung und weitere klinische Validierungen – inklusive Tests in der pathologischen Routinediagnostik – auf der Agenda. Doch Prof. Klauschen ist überzeugt: „Die von uns entwickelte Methode erlaubt es in Zukunft, die histopathologische Tumordiagnostik präziser, standardisierter und damit auch qualitativ besser zu machen.“ 


Quelle: Charité – Universitätsmedizin Berlin

10.03.2021

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Diagnostische Sicherheit und Effizienz

Partnerschaft für mehr KI in der Ultraschalldiagnostik

Royal Philips und DiA Imaging Analysis Ltd. haben eine strategische Partnerschaft zur Einbindung KI-basierter Ultraschallanwendungen geschlossen. Automatisierte Lösungen sollen Kliniker dabei…

Photo

Interdisziplinäre Forschung

Zusammenhang zwischen Brustkrebs und Knochenwachstum entdeckt

Forschende haben entdeckt, dass Knochen als Reaktion auf bestimmte Signalmoleküle von Brusttumoren wachsen können. Möglicherweise ist das ein Abwehrmechanismus gegen Knochenmetastasen. Diese…

Photo

Bildbasierte Diagnose von Covid-19

KI erkennt Coronavirus auf CT-Scans

Zur Erkennung des Coronavirus SARS-CoV-2 gibt es neben den weltweit eingesetzten PCR-Tests (Polymerase-Kettenreaktion) noch weitere Diagnosemöglichkeiten: Die Erkrankung lässt sich auch per…

Verwandte Produkte

Greiner – VACUETTE FC Mix tube

Blood Glucose

Greiner – VACUETTE FC Mix tube

Greiner Bio-One
Image Information Systems – iQ-4VIEW

Mobile RIS/PACS Viewer

Image Information Systems – iQ-4VIEW

IMAGE Information Systems Europe GmbH
Lifotronic - FA-160 Immunofluorescence Analyzer

Other

Lifotronic - FA-160 Immunofluorescence Analyzer

Lifotronic Technology Co., Ltd
Newsletter abonnieren