Illustrative map of red-alert zone. Circles represent approximate location of...
Illustrative map of 'red-alert' zone. Circles represent approximate location of risk; circle size indicates level of risk.

Source: Michael Walsh, University of Sydney

Areas revealed

Where could the next pandemic emerge?

An international team of researchers has taken a holistic approach to reveal for the first time where wildlife-human interfaces intersect with areas of poor human health outcomes and highly globalised cities, which could give rise to the next pandemic unless preventative measures are taken.

Areas exhibiting a high degree of human pressure on wildlife also had more than 40 percent of the world’s most connected cities in or adjacent to areas of likely spillover, and 14-20 percent of the world’s most connected cities at risk of such spillovers likely to go undetected because of poor health infrastructure (predominantly in South and South East Asia and Sub-Saharan Africa). As with COVID-19, the impact of such spillovers could be global.

Led by the University of Sydney and with academics spanning the United Kingdom, India and Ethiopia, the open-access paper shows the cities worldwide that are at risk. Last month, an IPBES report highlighted the role biodiversity destruction plays in pandemics and provided recommendations. This Sydney-led research pinpoints the geographical areas that require greatest attention.

Recommended article

Photo

Virology

Digital epidemiology in the Covid-19 war

Digital epidemiology is on the frontline in the Covid-19 war, with innovative techniques used to observe and monitor this viral spread across populations. Its increasingly important role was outlined to a virtual session at Medica 2020 by theoretical biologist Professor Dirk Brockmann. In a keynote presentation ‘Perspective of digital epidemiology – opportunities, promises and challenges’,…

Lead author Dr Michael Walsh, who co-leads the One Health Node at Sydney’s Marie Bashir Institute for Infectious Diseases and Biosecurity, said that previously, much has been done to identify human-animal-environmental hotspots. “Our new research integrates the wildlife-human interface with human health systems and globalisation to show where spillovers might go unidentified and lead to dissemination worldwide and new pandemics,” said Dr Walsh, from the University of Sydney’s School of Public Health, Faculty of Medicine and Health.

Dr Walsh said that although low- and middle-income countries had the most cities in zones classified at highest risk for spillover and subsequent onward global dissemination, it should be noted that the high risk in these areas was very much a consequence of diminished health systems. Moreover, while not as extensively represented in the zone of highest risk because of better health infrastructure, high-income countries still had many cities represented in the next two tiers of risk because of the extreme pressures the affluent countries exert on wildlife via unsustainable development.

Identifying areas at risk

Photo
The zones of highest potential spillover impact, and their adjacent cities, were found to be predominantly in sub-Saharan Africa and South and Southeast Asia.

Source: University of Sydney

The researchers took a three-staged approach:

  • First, identify where the sharing of space between wildlife and humans is greatest, and therefore where spillover events would be expected to be most common. The researchers refer to this as the ‘yellow’ and ‘orange’ alert zones of two- and three-way interactions between humans, domesticated animals and wildlife.
  • Next, identify where areas of high wildlife-human interface coincide with areas of poor health system performance, which would comprise areas expected to miss ongoing chains of transmission following a spillover event [‘red-alert’ zone – see map];
  • Finally, identify cities within or adjacent to these areas of spillover risk that are highly connected to the network of global air travel, and therefore may serve as conduits for future pandemics.

“This is the first time this three-staged geography has been identified and mapped, and we want this to be able to inform the development of multi-tiered surveillance of infections in humans and animals to help prevent the next pandemic,” the paper reads.

Of those cities that were in the top quartile of network centrality, approximately 43 percent were found to be within 50km of the spillover zones and therefore warrant attention (both yellow and orange alert zones). A lesser but still significant proportion of these cities were within 50km of the red alert zone at 14.2 percent (for spillover associated with mammal wildlife) and 19.6 percent (wild bird-associated spillover).

Dr Walsh said although it would be a big job to improve habitat conservation and health systems, as well as surveillance at airports as a last line of defence, the benefit in terms of safeguarding against debilitating pandemics would outweigh the costs. “Locally-directed efforts can apply these results to identify vulnerable points. With this new information, people can develop systems that incorporate human health infrastructure, animal husbandry, wildlife habitat conservation, and movement through transportation hubs to prevent the next pandemic,” Dr Walsh said. “Given the overwhelming risk absorbed by so many of the world’s communities and the concurrent high-risk exposure of so many of our most connected cities, this is something that requires our collective prompt attention.”

Source: University of Sydney

05.12.2020

Read all latest stories

Related articles

Photo

Research on after-effects

Viruses leave traces long after the infection is over

Viruses do not always kill the cells they infect. Researchers at the University of Basel have discovered in experiments with mice that cells have the power to self-heal and eliminate viruses.…

Photo

AI-assisted analysis

Prediciting viral infections with microscopy & deep learning

When viruses infect cells, changes in the cell nucleus occur, and these can be observed through fluorescence microscopy. Using fluoresence images from live cells, researchers at the University of…

Photo

Good news

Mild COVID-19 induces lasting antibody protection

Months after recovering from mild cases of COVID-19, people still have immune cells in their body pumping out antibodies against the virus that causes COVID-19, according to a study from researchers…

Related products

Lifotronic - FA-160 Immunofluorescence Analyzer

Other

Lifotronic - FA-160 Immunofluorescence Analyzer

Lifotronic Technology Co., Ltd
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH
Subscribe to Newsletter