Bacterial viruses

Tools of the trade

LMU researchers demonstrate for the first time that bacteriophages (bacterial viruses) carry genetic instructions for proteins that mediate the transport of their DNA to specialized replication sites in the host cell.

Bacterial viruses carry genetic instructions for proteins. carry genetic...
Bacterial viruses carry genetic instructions for proteins. carry genetic instructions for proteins.
Source: Catriona Donovan/LMU

Viruses are essentially inert nucleoprotein particles that come alive only when they find the right host cells, on which they depend for their reproduction. Bacteriophages (or ‘phages’ for short) are viruses that infect bacteria. Work carried out by researchers led by Marc Bramkamp, who is Professor of Microbiology at LMU, and Professor Julia Frunzke at the Jülich Research Center now shows that some bacteriophages deliver certain proteins required for optimal replication of their own genomes to host cells that do not themselves possess them. The new findings appear in the journal “Nucleic Acids Research”.

“In order to replicate their own hereditary material, viruses must ensure that it reaches the sites of DNA replication that are normally utilized by the host and the correct egress sites where the viruses leave the host. We have now shown, for the first time, how a so-called prophage (a viral DNA that has been integrated into the genome of its host during a prior infection) organizes its own transport to such a replication site when induced to self-excise from the bacterial chromosome,” Marc Bramkamp explains.

Viruses that infect the nucleated cells of higher organisms (eukaryotes) often exploit the so-called actin cytoskeleton, a complex system of metastable fiber-like structures (filaments) for this purpose. The cytoskeleton then delivers the viral DNA to the replication machinery in the nucleus of the host cell. Bacterial cells do not have a nucleus, but it has become clear in recent that some species of bacteria possess a cytoskeleton, which is in fact made up of a protein that is related to the actin of eukaryotes. Bramkamp, Frunzke and their co-workers have now shown that an actin-like protein plays a role in the replication of the DNA of a bacteriophage found in a so-called corynebacterium.

Walking the tracks

The species chosen for study by the LMU researchers was Corynebacterium glutamicum, which lacks a cytoskeleton. “We found, however, that the integrated prophage contained a gene for an actin-like structural protein, and inferred that it might be involved in the intracellular transport of the viral DNA,” Bramkamp says. In other words, the virus itself carries the tools for the construction of an intracellular transport system in its luggage, as it were.

Bramkamp and colleagues then went on to elucidate the molecular mechanism underlying the transport of the viral DNA. The genetic instructions for the production of an actin-like protein reside in a gene they call AlpC. “It is one of the first viral genes to be transcribed when the integrated prophage is experimentally reactivated,” says Bramkamp. Reactivation leads to the excision of the viral DNA, which then is linked to an adapter protein, AlpA. This complex in turn attaches to actin-like filaments made up of AlpC. “The viral DNA then moves along the filament from one AlpC subunit to the next, like someone stepping out along a path,” Bramkamp explains. The adapter protein is responsible for the control of filament dynamics. “The resulting cycles of assembly and disassembly of the filaments determine the direction of movement of their DNA cargo.” The viral DNA’s destination is most probably the cell membrane, where replication and virus assembly then take place.

“Our work shows for the first time that the interaction between viruses and the cytoskeleton is an evolutionarily ancient process,” Bramkamp points out. “It might even be the case that bacteria which have their own actin-like cytoskeleton originally obtained the necessary genes from viruses,” He adds the researchers now want to look at other phages to find out more about how intracellular transport works in virus-infected bacteria.


(Nucleic Acids Research, doi: 10.1093/nar/gkv374)


Source: LMU

08.05.2015

Read all latest stories

Related articles

Photo

News • Infection

Evidence of Zika virus found in tears

Researchers have found that Zika virus can live in eyes and have identified genetic material from the virus in tears, according to a study from Washington University School of Medicine in St. Louis.…

Photo

News • Coronavirus mechanism discovered

Organ-on-a-chip reveals how SARS-CoV-2 invades blood vessels

A research group has revealed that SARS-CoV-2 disrupts the vascular endothelial barrier by suppressing the expression of Claudin-5 (CLDN5) to invade the blood vessels.

Photo

News • Deep mutational scanning for SARS-CoV-2

Preparing rapid tests for future coronavirus variants

How can rapid antigen tests be adjusted to reliably detect future variants of SARS-CoV-2? A research team funded by the National Institutes of Health is currently working on finding an answer.

Related products

Sarstedt – Low DNA Binding Micro Tubes

Research Use Only

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Siemens Healthineers – Fast Track Real-time PCR assays

Infectious Disease

Siemens Healthineers – Fast Track Real-time PCR assays

Siemens Healthineers
MolGen - Extraction Kit

Extraction

MolGen - Extraction Kit

MolGen
MolGen - MoaA kit

Amplification/Detection

MolGen - MoaA kit

MolGen
Subscribe to Newsletter