The light of fireflies for medical diagnostics

The lab of Kai Johnsson at EPFL, led by Alberto Schena and Rudolf Griss, were able to add a small chemical tag on the enzyme luciferase, which produces the light of fireflies. The tag detects a target protein, and the luciferase gives out a light signal that can be seen with a naked eye.

This is an example of the luminescence produced by the chemical modifications...
This is an example of the luminescence produced by the chemical modifications described in this article. Key: -S, a tube without streptavidin; +S, with streptavidin.
Source: Kai Johnsson/EPFL

In biology and medicine, we often need to detect biological molecules. For example, in cancer diagnostics, doctors need quick and reliable ways of knowing if tumor cells are present in the patient's body. Although such detection methods exist, they often require a lot of time, work and money. EPFL scientists have chemically tweaked the enzyme responsible for the light of fireflies to make it "sniff out" target biological molecules and give out a light signal. The result is a cheap, simple and highly accurate detection system that can change the face of the field. The work, now part of an EPFL startup, is published in Nature Communications.

The team has proven expertise in this field: in 2014, they developed a quick and easy drug-monitoring molecule that led to a startup company, Lucentix. Thinking outside the box, they bypassed the pains of protein engineering altogether: instead of mutating the luciferase to make it sensitive for a target protein - which would require enormous labor - they simply attached it to a small chemical tag.

The tag acts as a switch: it blocks luciferase, preventing it from producing light. When the tag detects its target protein, it attaches to that instead, removing the block from lucifarase. As a result, luciferase is free to turn on the lights, which is the signal that the target has been found. In short, the scientists have created a chemical solution for a biological problem.

"You can think of the tagged luciferase as a cyborg molecule," says Johnsson. "Half bio, half synthetic. How could you make luciferase sensitive to the presence of another protein just through mutations? It's a lot of work. With this chemical trick, all we have to worry about is designing an appropriate tag that can recognize the target protein."

The activation of luciferase when it detects its target protein is dramatic enough to see with a naked eye. This means that the system does not demand expensive and complicated readout devices.

But the success has wider implications. "This is a generalized design," says Johnsson. "It shows how you can exploit synthetic chemistry to create sophisticated biosensor proteins."

Source: Ecole Polytechnique Fédérale de Lausanne

23.07.2015

Read all latest stories

Related articles

Photo

Common DNA structure

Nano-signature discovery could revolutionise cancer diagnosis

A quick and easy test to detect cancer from blood or biopsy tissue could eventually result in a new approach to patient diagnosis. The test has been developed by University of Queensland researchers…

Photo

Going digital

Faster and better diagnosis of cancer with digital pathology

Leeds Teaching Hospitals NHS Trust and the University of Leeds have announced a critical milestone in going digital, by scanning every glass slide they produce. The milestone represents a major step…

Photo

Advanced techniques

Breast cancer: how imaging technology will help avoid unnecessary biopsies

Enhancing the diagnosis of breast cancer is the stated goal of a research team at the German Cancer Research Center (DKFZ) in Heidelberg. The scientists have combined an advanced method of…

Related products

Atlas Genetics - Atlas Genetics io system

Infectious diseases testing

Atlas Genetics - Atlas Genetics io system

Atlas Genetics Ltd
DiaSys Diagnostic Systems - InnovaStar

Clinical chemistry

DiaSys Diagnostic Systems - InnovaStar

DiaSys Diagnostic Systems GmbH
Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Image Information Systems – iQ-4VIEW

Mobile RIS/PACS Viewer

Image Information Systems – iQ-4VIEW

IMAGE Information Systems Europe GmbH
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH