Infection with Covid-19

The antiviral effect of innate immunity

Innate immunity is the fastest-acting component of the immune system, but so far little is known about its role during infection with SARS-CoV-2. A few hours after an infection, the body emits an alarm signal, interferon, enabling cells that have not yet been infected to produce antiviral proteins. This phenomenon occurs well before the production of neutralizing antibodies. Scientists from the Institut Pasteur and the CNRS set out to investigate the consequences of SARS-CoV-2 infection for cell function and the antiviral role of innate immunity.

Using real-time video microscopy, they showed that infected cells in culture can fuse with neighboring cells and die after forming giant cells known as "syncytia," composed of dozens of other cells. But interferon counters this phenomenon by inducing cellular proteins that prevent the fusion of infected cells.
These results showing the antiviral effect of innate immunity are available online on The EMBO Journal.

Little is yet known about the role of innate immunity in COVID-19. Various teams in different countries, including a French team, have recently demonstrated that severe forms are associated with a deficiency in interferon production.1 Interferon treatment has also shown beneficial effects in some patients. Interferon is a substance with antiviral activity that stimulates cells' natural defenses by inducing the synthesis of proteins that protect them from infection. Innate immunity occurs rapidly and can act in just a few hours, well before the other two forms of immunity – humoral immunity (the production of neutralizing antibodies that block virus entry into cells) and cell-mediated immunity (involving white blood cells such as cytotoxic lymphocytes that are capable of destroying infected cells).

Investigation of viral fusion

Scientists from the Virus and Immunity Unit (Institut Pasteur/CNRS) investigated viral fusion, the mechanism by which viral membranes and cellular membranes fuse, allowing viral genetic material to enter the target cell. Viral fusion can also occur when the cell is infected and produces new viruses. Using real-time video microscopy, the scientists demonstrated that infected cells fuse with neighboring cells to form syncytia, or giant cells containing dozens of virus-producing cells, which eventually die. The role of syncytia in COVID-19 disease is not yet fully understood, but a team of Italian and British physicians recently demonstrated, by performing lung autopsies on patients who died of the disease, that syncytia was present in a high proportion of patients with severe forms.2

The authors of the study also examined how interferon affects syncytium formation. Interferon-induced transmembrane proteins (IFITMs) can play contradictory roles in different coronaviruses. The scientists demonstrated that in cells infected with SARS-CoV-2, IFITM proteins inhibit syncytium formation, thereby giving us an insight into the way in which interferon might control the evolution of COVID-19. These original observations, obtained in in vitro models with IFITM overexpression, now need to be reproduced in physiological models of human bronchial cells.

"Our findings give us a better understanding of the harmful effects of SARS-CoV-2 on cells and the role of innate immunity and interferon in controlling infection," comments Olivier Schwartz, lead author of the study and Head of the Virus and Immunity Unit at the Institut Pasteur.

Source: Institut Pasteur

18.10.2020

Read all latest stories

Related articles

Photo

Safety study

Covid-19: Investigating the infection risk from ventilated patients

What happens when patients can no longer breathe on their own and need to be supported by machines? How far does infected air spread throughout a room? And what safety precautions do medical and…

Photo

Proof of concept

Surveillance system tracks Covid infection hotspots in hospital

A University of Manchester team has applied new techniques to detect and track the transmission of Covid-19 in hospital. The proof of concept system combines the movement and interaction of staff and…

Photo

Coronavirus

COVID-19: Enzyme blocks immune response to infection

Researchers from Cleveland Clinic’s Florida Research and Innovation Center (FRIC) have identified a potential new target for anti-COVID-19 therapies.

Related products

Subscribe to Newsletter