To treat and prevent these diseases, researchers need to understand why a lack...
To treat and prevent these diseases, researchers need to understand why a lack of oxygen would affect the immune system.

Credit: La Jolla Institute for Immunology

News • Hypoxia

Stopping lung damage before it turns deadly

Scientists at the La Jolla Institute for Immunology discover new drug target for severe asthma and fibrosis.

If you've ever struggled to breathe, you've had a moment of hypoxia—a lack of oxygen. Hypoxia can have long-term effects. In fact, doctors describe hypoxia as an "initial insult."

Experiencing hypoxia is a known trigger for developing and worsening lung conditions such as severe asthma, chronic obstructive pulmonary disease (COPD), and fibrosis. To treat and prevent these diseases, researchers need to understand why a lack of oxygen would affect the immune system.

New research from scientists at La Jolla Institute for Immunology (LJI), shows that hypoxia can activate the same group of immune cells that cause inflammation during asthma attacks. As a person with gasps for breath, these cells flood the airways with molecules that damage the lungs.

"We show how lack of oxygen can be part of a feedback loop that can contribute to even worse inflammation," says LJI Professor and Chief Scientific Officer Mitchell Kronenberg, Ph.D., a member of the LJI Center for Autoimmunity and Inflammation. "This work gives us insight into the causes of fibrosis of the lung and severe asthma."

Kronenberg and his colleagues worked with a genetically altered mouse model to mimic the signals of hypoxia in the airway's epithelial cells, which line the paths to the lungs. They discovered that combining the hypoxia signals with inflammatory signals stimulated the "innate," or rapidly responding immunity, and an immune cell type called an ILC2.

An ILC2's job is to make signaling molecules (called cytokines) that quickly alert other immune cells to react to a pathogen. Unfortunately, ILC2s sometimes over-react and respond to harmless environmental allergens. In these cases, ILC2s churn out cytokines that drive mucus production and inflammation in the lungs. All this swelling and mucus leads to hypoxia.

As they report in Journal of Experimental Medicine, ILC2s respond to hypoxia as well, adding to the lung damage already caused during an asthma attack. "That hypoxia may then contribute further to inflammation," says Kronenberg.

The next step was to figure out exactly how epithelial cells activate ILC2 during hypoxia. LJI Postdoctoral Fellow Jihye Han, Ph.D., led the work to uncover an unexpected culprit: adrenomedullin (ADM). ADM is known for its role in helping blood vessels dilate, but until now it had no known role in immune function.

Kronenberg was surprised to see ADM involved—but not shocked. "We're finding that many molecules with no previously known role in the immune system can also be important for immune function," says Kronenberg. "We need to understand that more generally."

The researchers showed that human lung epithelial cells exposed to hypoxia also produced ADM. This means ADM or its receptor could be targets for treating inflammatory and allergic lung diseases.

The challenge is to find a balance between dampening the harmful immune response without leaving the body vulnerable to infections. Kronenberg points out that the epithelial cell-ADM-ILC2 connection protected mice from hookworm infections, which damage the lungs and gut.

"ADM is a new target for lung diseases and has been implicated in bacterial pneumonia as well," says Kronenberg. "But blocking it would have to be done carefully."

Source: La Jolla Institute for Immunology

12.05.2022

Read all latest stories

Related articles

Photo

News • Resistance building prevention

New test to reduce antibiotics in primary care

Antibiotic prescribing in primary care could be monitored using health insurance data. And reduced with a simple test.

Photo

News • mhealth

App accurately detects COVID-19 infection in people’s voices

Artificial intelligence (AI) can be used to detect COVID-19 infection in people’s voices by means of a mobile phone app, according to research to be presented at the European Respiratory Society…

Photo

News • Aspergillosis monitoring

Chip-based model to observe fungal spread in the lung

A chip-based infection model developed by Jena researchers enables live microscopic observation of damage to lung tissue caused by the invasive fungal infection aspergillosis.

Related products

Beckman Coulter – Access Procalcitonin (PCT)

Immunoassays

Beckman Coulter – Access Procalcitonin (PCT)

Beckman Coulter Diagnostics
Fujifilm Wako – μTASWako i30

Immunoassays

Fujifilm Wako – μTASWako i30

FUJIFILM Wako Chemicals Europe GmbH
medigration – ImageVision

Reading

medigration – ImageVision

medigration GmbH
Mindray – CL-1000i/1200i Chemiluminescence Immunoassay System

Immunoassays

Mindray – CL-1000i/1200i Chemiluminescence Immunoassay System

Shenzhen Mindray Bio-Medical Electronics Co., Ltd
Subscribe to Newsletter