News • DNA repair

Proteins: Sentinels of the Genome

A comprehensive resource reveals dynamics of 70 DNA repair proteins - a powerful platform for basic research and anticancer drug evaluation

Throughout life, DNA is constantly being damaged by environmental and intrinsic factors and must be promptly repaired to prevent mutations, genomic instability, and cancer. Different types of damages are repaired by numerous proteins organized into damage-specific pathways. The proteins from different pathways must be spatially and temporally coordinated in order to efficiently repair complex DNA damages. How this is achieved by the cell, is still poorly understood, due to the complexity and rapid dynamics of the process. This question is particularly important since many anticancer drugs either damage DNA or target DNA repair proteins. A systematic study of the impact of such drugs on the overall coordination of the repair process could deliver new insights into their mechanisms of action, prompt new applications or suggest possible side effects.

Recruitment of two proteins to the sites of DNA damage generated by laser...
Recruitment of two proteins to the sites of DNA damage generated by laser micro-irradiation.
Source: Stoynov/ IMB-BAS

This study can serve as a platform for systematic evaluation of the effects of anticancer drugs targeting the DNA repair process

Stoyno Stoynov

An international team of researchers from the Institute of Molecular Biology at the Bulgarian Academy of Sciences (IMB-BAS), Sofia University, the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), the Biotechnology Center (BIOTEC) and the Medical Faculty, both at the TU Dresden, and the Department of Mathematics of University of Pennsylvania built a high resolution, quantitative model of the dynamics of arrival and departure of 70 key DNA repair proteins at sites of complex DNA damage. The researchers present their findings in the current issue of Molecular Cell. Combining the proteins based on their times of arrival, highlighted unexpected temporal aspects of complex DNA damage repair. The researchers could show that the proteins, which synthesize new stretches of DNA as part of the repair process, arrive at different times: The proteins, which synthesize DNA without errors (error-free) are recruited within thirty seconds, while proteins performing imprecise DNA synthesis (error-prone) are recruited a minute later. The mechanism responsible for the delay in the error-prone synthesis, which is uncovered in this study, provides an opportunity for a precise repair of complex DNA damages.

The study also reveals that treatment with BMN673 (Talazoparib), a promising anticancer drug, dramatically changes the timescale of recruitment of DNA repair proteins at sites of complex damage. Notably, BMN673 delays the arrival of the error-free DNA synthesis machinery, which is loaded simultaneously with the error-prone repair proteins. The rearrangement in the order of the recruitment or removal of repair proteins as a result of BMN673 treatment, could affect the outcome of DNA repair and have a significant role for the anticancer activity of the drug. The lead investigator Stoyno Stoynov from the IMB-BAS and former visiting scientist at the MPI-CBG and Alexander von Humboldt fellow at TU Dresden, concludes: ”This study generated a comprehensive kinetics-based resource which proved to be a powerful tool for investigating the interplay and coordination between DNA repair pathways. Even more importantly, it can serve as a platform for systematic evaluation of the effects of anticancer drugs targeting the DNA repair process.”


Source: Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)

18.03.2018

Related articles

Photo

News • Real-time tumor profiling

AI tool decodes brain cancer’s genome during surgery

Scientists have designed an AI tool that can rapidly decode a brain tumor’s DNA to determine its molecular identity during surgery — critical information that can guide treatment decisions.

Photo

News • Independent genes

Cancer: Study sheds light on mysterious DNA rings

Tumors sometimes seem to take on a life of their own, with cancer genes “striking out” in ring shapes. An international research team has new insights into this phenomenon.

Photo

News • Genetics & Viruses

"Gene scissors" in human cells inhibit viral infections

Scientists at the University of Applied Sciences Krems (IMC Krems) show that CRISPR-Cas9 can also be used to inhibit viruses such as adenoviruses in cell cultures.

Related products

Subscribe to Newsletter