Personalized treatment

Could B cells turn the tide in sarcoma immunotherapy?

How can the treatment of soft tissue sarcomas, these particularly resistant and aggressive forms of cancer, be improved and better personalized?

An international team led by Wolf Hervé Fridman with researchers from Inserm, Sorbonne Université and Université de Paris at the Cordeliers Research Center, in collaboration with the French League against cancer and Institut Bergonié, has shown that B cells also play a major role in predicting of patient’s response to immunotherapy.  It was previously thought only T cells could be used in this way. Their findings, published in the journal Nature, pave the way for the personalization of treatments for patients with soft tissue sarcomas.

Photo
Tertiary lymphoid structures are cellular aggregates that contain many B-cells (in purple) located near tumors. This is the area where the antitumor immune response starts.

© Antoine Bougouin/Centre de recherche des Cordelier/Inserm, Sorbonne Université, Université de Paris

Soft tissue sarcomas are a heterogenous group of aggressive, chemotherapy-resistant cancers that affect the soft tissues of the body (fat, muscles, fibrous tissue, blood and lymphatic vessels, nerves, etc.). In the current clinical trials, only 15% of patients respond to immunotherapy, which raises the question of the needless exposure of the other patients to the toxicity of these treatments. Identifying markers that predict their response to immunotherapy is therefore crucial. A strategy that until now has been essentially focused on the T cells – immune cells capable of recognizing cells that are infected, cancerous or foreign to the body.

Through research published in Nature, a group led by Wolf Hervé Fridman with members from Inserm, Sorbonne Université and Université de Paris at the Cordeliers Research Center, in collaboration with the “Tumor identity card” team from the French League against cancer, Institut Bergonié, and teams from the USA and Taiwan, studied the question of identifying other potential markers.

They analyzed 608 tumors, classifying them into three groups according to the composition of their microenvironment: immunologically poor tumors (low in immune cells and poorly vascularized), highly vascularized tumors, and immunologically rich tumors. The latter present aggregates of various cell types with high levels of B cells, the immune cells responsible for the production of antibodies. These aggregates are called tertiary lymphoid structures. The researchers observed that an anti-tumor immune response initiates within them, thereby showing that the B cells could play an anti-tumor role. What is more, in a phase 2 clinical trial, the patients with immunologically rich tumors showed a high response rate (50%) to one immunotherapy: pembrolizumab. These patients also had a higher survival rate than those with immunologically poor or highly vascularized tumors.

A second study by a US team, co-signed by Wolf Hervé Fridman’s team at Cordeliers Research Center (Inserm/Sorbonne Université/Université de Paris), and published in parallel in Nature, extended these observations to include melanoma and kidney cancer. The results of these studies show that in addition to the T cells that are usually researched, the B cells play an essential role in the response to immunotherapy for certain cancers. These cells bring new hope for the treatment of soft tissue sarcomas, which are particularly resistant to standard therapies. In addition, from a personalized medicine standpoint, these findings could help orient clinical decisions and patient treatment by means of a simple test to identify those whose tumors are immunologically rich.

On the basis of these results, an initial French clinical trial coordinated by Antoine Italiano (Institut Bergonié, Université de Bordeaux), co-author of the first article, and which includes patients with such tumors, is currently ongoing within the French Sarcoma Group.


Source: Inserm

17.01.2020

Read all latest stories

Related articles

Photo

Glioblastoma

New actively personalized therapeutic vaccine for brain cancer

The prospect of an actively personalized approach to the treatment of glioblastoma has moved a step closer with the recent publication in Nature of favorable data from the phase 1 study GAPVAC-101,…

Photo

Immunotherapy response prediction

Pulling the "molecular brake" on tumor cells

An unexpected discovery that could bring new hope to cancer patients worldwide: Researchers from the University of California San Diego have identified a mechanism that could predict response to…

Photo

Brain cancer

Typical mutation in cancer cells stifles immune response

The exchange of a single amino acid building block in a metabolic enzyme can lead to cancer. In addition, it can impair the immune system. It thus blocks the body’s immune response in the battle…

Related products

Beckman Coulter – Access 25(OH) Vitamin D Total

Immunoassays

Beckman Coulter – Access 25(OH) Vitamin D Total

Beckman Coulter, Inc.
Beckman Coulter – Access Active B12

Immunoassays

Beckman Coulter – Access Active B12

Beckman Coulter, Inc.
Beckman Coulter – Access Procalcitonin (PCT)

Immunoassays

Beckman Coulter – Access Procalcitonin (PCT)

Beckman Coulter, Inc.
Beckman Coulter – Anti-Mullerian Hormone (AMH)

Immunochemistry

Beckman Coulter – Anti-Mullerian Hormone (AMH)

Beckman Coulter, Inc.
Beckman Coulter – phi (Prostate Health Index)

Immunochemistry

Beckman Coulter – phi (Prostate Health Index)

Beckman Coulter, Inc.