Computerised model of the heart to develop new therapies

During a workshop organized by the European Science Foundation (ESF), researchers discussed further steps in developing computerised “in-silico” models of the heart that simulate the real heart and enable possible drugs and therapies to be tested without risk to people.

Photo: Computerised model of the heart to develop new therapies
The workshop highlighted how recent progress in imaging technologies was helping heart modellers overcome the big dilemma they have faced up till now – actually proving that the models really are an accurate representation of the real human heart. This has been the big “catch 22” of heart modelling, that in order to create a realistic model, you need accurate and extensive data from real hearts for calibration. “Validation of the models is very important, and was raised at the workshop,” said Blanca Rodriguez, scientific coordinator of the ESF workshop, and senior cardiac researcher at Oxford University, Europe’s leading centre for cardiac modelling. “One of the problems has been that it is much easier to get experimental data from animals than humans.”
Such animal data can help calibrate some aspects of the models, but only data from human hearts can fine tune them to the point at which they can actually make useful predictions and test therapies. Fortunately such data is now becoming available as a result of dramatic progress in imaging techniques that can observe cardiac activity externally without need for invasive probes. “We are now getting data at very high resolutions, and that allows us to model things in more detail, with greatly improved anatomy and structure,” said Rodriguez. This in turn requires access to greater computational power and more sophisticated software, both of which are available at Oxford.
The models in turn are allowing researchers to study disease and understand what can go wrong, which is the first step towards developing cures. One of the most important diseases being modelled is myocardial ischaemia, which is the loss of blood supply to part of the heart muscle, leading ultimately to failure and potentially death if untreated.
Typically victims of heart failure never fully recover their former health and vigour, because part of the heart muscle has been permanently lost. However stem cell therapy holds the promise of being able to regenerate heart muscle destroyed by disease, but this will require careful testing to eliminate possibly dangerous side effects, such as cancer and disruption of normal heart rhythms, leading to arrhythmia, or irregular heart beats. Here again the heart models could play a vital role. “They could be used to model stem cells’ behaviour, and see how they are incorporated into the heart,” said Rodriguez.
The ESF workshop also had another dimension – to kick start a Europe-wide effort to catch up with the US in this vital field. Oxford was once the world leader, for remarkably the first cardiac model was developed almost half a century ago in 1961 by Dennis Noble, who although now officially retired is still assisting Rodriguez and colleagues today. Noble’s original model was of just of a single heart cell. But since the late 1990s, the models have been extended to the whole organ, incorporating multiple cell types.
The workshop identified three key issues that had to be addressed, according to Rodriguez. The first one was to improve the links within Europe’s scattered heart modelling community. The second two recommendations, less specific to Europe, were to create a standard and robust software infrastructure for sharing heart models and associated data, and to define exactly how to calibrate the models more effectively from experimental data.
The next step is to act on these recommendations, but Rodriguez is now confident that Europe is well placed to regain its early momentum in this vital field of medical research.
European Science Foundation

11.01.2008

Read all latest stories

Related articles

Photo

Article •

Hypertension worldwide

Countries vary widely in their capacity to manage hypertension, but globally the majority of diagnosed hypertensives is inadequately controlled. Not treated it can cause cardiovascular disease (CVD),…

Photo

Article •

euHeart

Royal Philips Electronics is to lead `euHeart´, the new European Union (EU) funded research project that aims to improve CVD diagnosis, therapy planning and treatment.

Photo

Article •

Myocardial infarction

In his lecture Focus on new therapy strategies for heart attacks, Prof. Hans Michael Piper, President of this year's Congress of the German Cardiac Society, gave some fascinating insights in to…

Related products

Subscribe to Newsletter