News • Headache

Chronic migraine: potential novel treatment discovered

By discovering a potential new cellular mechanism for migraines, researchers may have also found a new way to treat chronic migraine.

portrait of amynah pradhan
Amynah Pradhan, UIC associate professor of psychiatry, University of Illinois College of Medicine
Source: UIC

Amynah Pradhan, associate professor of psychiatry at the University of Illinois Chicago, is the senior author of the study, whose goal was to identify a new mechanism of chronic migraine, and propose a cellular pathway for migraine therapies. The study, “Neuronal complexity is attenuated in preclinical models of migraine and restored by HDAC6 inhibition, is published in eLife.

Pradhan, whose research focus is on the neurobiology of pain and headache, explained that the dynamic process of routing and rerouting connections among nerve cells, called neural plasticity, is critical to both the causes and cures for disorders of the central nervous system such as depression, chronic pain, and addiction. The structure of the cell is maintained by its cytoskeleton which is made up of the protein, tubulin. Tubulin is in a constant state of flux, waxing and waning to change the size and shape of the cell. This dynamic property of the cell allows the nervous system to change in response to its environment. Tubulin is modified in the body through a chemical process called acetylation. When tubulin is acetylated it encourages flexible, stable cytoskeleton; while tubulin deacetylation – induced by histone deacetylase 6, or HDAC6, promotes cytoskeletal instability.  

Studies in mice models show that decreased neuronal complexity may be a feature, or mechanism, of chronic migraine, Pradhan said. When HDAC6 is inhibited, tubulin acetylation and cytoskeletal flexibility is restored. Additionally, HDAC6 reversed the cellular correlates of migraine and relieved migraine–associated pain, according to the study.  “This work suggests that the chronic migraine state may be characterized by decreased neuronal complexity, and that restoration of this complexity could be a hallmark of anti-migraine treatments. This work also forms the basis for development of HDAC6 inhibitors as a novel therapeutic strategy for migraine,” the researchers report. 

silhouette of woman holding her forehead from headache, migraine

Image source: unsplash/Matteo Vistocc

Pradhan said this research reveals a way to possibly reset the brain toward its pre-chronic migraine state. “Blocking HDAC6 would allow neurons to restore its flexibility so the brain would be more receptive to other types of treatment. In this model we are saying, maybe chronic migraine sufferers have decreased neuronal flexibility. If we can restore that complexity maybe we could get them out of that cycle,” she said. Once out of the cycle of decreased neuronal complexity, the brain may become more responsive to pain management therapies, Pradhan said. HDAC6 inhibitors are currently in development for cancer, and HDCA6 as a target has been identified for other types of pain. “It opens up the possibility of something we should be looking at on a broader scale,” she said. “Are these changes maybe a hallmark of all sorts of chronic pain states?” 

Migraine is a common brain disorder that is estimated to affect 14% of the world population. Current U.S. cost estimates for migraine are as high as $40 billion annually. One particularly debilitating subset of migraine patients are those with chronic migraine, defined as having more than 15 headache days a month. Migraine therapies are often only partially effective or poorly tolerated, creating a need for more diverse drug therapies. 


Source: University of Illinois Chicago

07.05.2021

Related articles

Photo

News • Taxane-induced peripheral neuropathy

New tool predicts nerve damage after breast cancer chemotherapy

Researchers have developed a tool that can predict the risk level for side effects in the nervous system of women treated for breast cancer using taxanes. This could help adapt treatment.

Photo

News • Vascular and Neurosurgery

New procedure to prevent phantom pain after limb amputation

6 out of 10 people develop pain after a limb amputation. Researchers now investigate whether a preventive, relatively simple nerve surgery can prevent patients from experiencing this pain.

Photo

News • Research on autoantibody patterns

The unique and complex origins of rheumatoid arthritis

New research challenges assumptions about the origin of rheumatoid arthritis, which are probably too simple. The findings may point towards improved diagnostics of this painful autoimmune disease.

Related products

Subscribe to Newsletter