Implants

Using 'Pacemakers' in spinal cord injuries

Researchers from Charité – Universitätsmedizin Berlin and EPFL, Lausanne have succeeded in restoring motor function following spinal cord injury. The researchers were able to show that coordinated muscle movement is the result of alternating activation patterns emanating from the spinal cord. Newly-developed implants, which use electrical stimulation to mimic these signals, were used to target and reactivate specific segments of the spinal cord.

Electrical stimulation of the spinal cord below the site of injury.
Electrical stimulation of the spinal cord below the site of injury.
Source: European Project NEUwalk

Paraplegia is the result of traumatic injury to the spinal cord. Communication between the brain and spinal cord is disrupted, which often leads to severe functional impairment and life-long paralysis. Research studies have shown that the spinal cord is capable of producing coordinated movements in response to electrical or chemical stimulation, even in the absence of signals from the brain. “Our aim is to use electrical stimulation to restore spinal cord function below the site of injury. We are hoping to succeed in enhancing the body's own ability to produce voluntary movement by mimicking the natural spinal cord activity as closely as possible,” explains Dr. Nikolaus Wenger, who is involved in research at Charité's Department of Neurology and the Berlin Institute of Health.

Using an animal model, the team of European researchers was able to show that leg movements are associated with a wave-like activation of specific sections of the spinal cord. “In order to be able to reproduce this activity in paraplegic individuals, we developed permanent implants that are capable of selectively activating the spinal cord,” says Dr. Wenger. Both strength and balance during locomotion can be improved by stimulating the spinal cord in the right place at the right time. The researchers' innovative implants and stimulation protocols allow the spinal cord to be activated based on continuous motion feedback.

Electrical stimulation of the spinal cord can also be used to generate movement in humans, which is why researchers are currently in the process of finding ways to translate these findings into clinical applications. This new method of stimulating the spinal cord may contribute to the development of improved treatments for patients with paraplegia. Following further developments, these new treatment approaches may also be adaptable for use in stroke research.


Source: Charité – Universitätsmedizin Berlin

22.02.2016

Related articles

Photo

Video • Zwitterion research

Polymer coating to prevent blood clotting in medical implants

Researchers at the University of Sydney are using so-called Zwitterions to create a surface coating that could stop blood clotting in medical devices and implants like catheters and stents.

Photo

News • Exploring the role of P2X7

Preventing epilepsy after traumatic brain injury

Traumatic brain injury can lead to post-traumatic epilepsy (PTE). Researchers focus on a specific brain receptor to better understand and prevent PTE in at-risk patients.

Photo

News • Neural implant degradation

Building more durable implantable brain chips

New insights on the degradation of implantable chips in the body could lead to enhanced longevity of the chips and better treatments for patients with Parkinson's or clinical depression.

Related products

Subscribe to Newsletter