Electric wound care

This E-bandage could speed up wound healing

Skin has a remarkable ability to heal itself. But in some cases, wounds heal very slowly or not at all, putting a person at risk for chronic pain, infection and scarring. Now, researchers have developed a self-powered bandage that generates an electric field over an injury, dramatically reducing the healing time for skin wounds in rats.

Photo
A wound covered by an electric bandage on a rat’s skin (top left) healed faster than a wound under a control bandage (right).
Source: ACS

They report their results in ACS Nano. Chronic skin wounds include diabetic foot ulcers, venous ulcers and non-healing surgical wounds. Doctors have tried various approaches to help chronic wounds heal, including bandaging, dressing, exposure to oxygen and growth-factor therapy, but they often show limited effectiveness. As early as the 1960s, researchers observed that electrical stimulation could help skin wounds heal. However, the equipment for generating the electric field is often large and may require patient hospitalization. Weibo Cai, Xudong Wang and colleagues wanted to develop a flexible, self-powered bandage that could convert skin movements into a therapeutic electric field.

To power their electric bandage, or e-bandage, the researchers made a wearable nanogenerator by overlapping sheets of polytetrafluoroethylene (PTFE), copper foil and polyethylene terephthalate (PET). The nanogenerator converted skin movements, which occur during normal activity or even breathing, into small electrical pulses. This current flowed to two working electrodes that were placed on either side of the skin wound to produce a weak electric field. The team tested the device by placing it over wounds on rats’ backs. Wounds covered by e-bandages closed within 3 days, compared with 12 days for a control bandage with no electric field. The researchers attribute the faster wound healing to enhanced fibroblast migration, proliferation and differentiation induced by the electric field.


Source: American Chemical Society

20.12.2018

Read all latest stories

Related articles

Photo

Diabetic feet prevention

Smart insole detects signs of foot ulcer

Stevens Institute of Technology has signed an exclusive licensing agreement with Bonbouton, giving the company the right to use and further develop a graphene sensing system that detects early signs…

Photo

Hope for new skin grafts

3D printed living skin complete with blood vessels

Researchers at Rensselaer Polytechnic Institute have developed a way to 3D print living skin, complete with blood vessels. The advancement, published in Tissue Engineering Part A, is a significant…

Photo

Meta-analysis

Benefit and risk: drug-coated balloon angioplasty

Scientists of Jena University Hospital, Germany, conducted a meta-analysis to evaluate benefit and risk of paclitaxel-coated balloon angioplasty compared to conventional balloon angioplasty as…

Related products

Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH