Researchers have stitched together nanobodies (green and red) that bind to two...
Researchers have stitched together nanobodies (green and red) that bind to two different places on the spike protein of SARS-CoV-2

Image by Hrishikesh Das, Hällberg lab, Karolinska Institutet


Small antibodies show promise against Covid-19

Researchers at Karolinska Institutet have developed, in collaboration with researchers in Germany and the U.S., new small antibodies, also known as nanobodies, which prevent the SARS-CoV-2 coronavirus from entering human cells.

The research study, published in Science, shows that a combined nanobody had a particularly good effect – even if the virus mutated. According to the researchers, the nanobodies have the potential to be developed into a treatment for Covid-19.

Specific proteins, spike proteins, on the surface of the SARS-CoV-2 coronavirus help the virus infect host cells. Therefore, antibodies that block the spike proteins and prevent them from binding to the cell can be a way to stop infection. From the perspective of potential therapeutic interventions, small fragments of antibodies, referred to as single-domain antibodies (sdAb) or nanobodies, may be a better alternative than regular antibodies. That is because nanobodies are significantly smaller. They are therefore able to bind to the virus in more places than regular antibodies. Nanobodies also have greater stability and are easier to produce cost-effectively on a large scale.

Martin Hällberg and co-author Hrishikesh Das in front of an electron cryomicroscopy at KI's 3D-EM facility

Photo: Ulf Sirborn

Researchers at Karolinska Institutet are now publishing, in collaboration with researchers at the University of Bonn in Germany and the Scripps Research Institute in California, a study describing new nanobodies against SARS-CoV-2 infection. “What is uniquely special here is that we have stitched together nanobodies that bind to two different places on the spike protein of the virus,” explains Martin Hällberg, researcher at the Department of Cell and Molecular Biology at Karolinska Institutet, and one of the research study’s corresponding authors. “This combination variant binds better than individual nanobodies and is exceptionally effective in blocking the virus’ ability to spread between human cells in cell culture.”

Additionally, the combined nano-antibodies worked even when tested on a virus variant that mutates extremely quickly. “This means that the risk is very small that the virus would become resistant to these combined nanobodies,” notes Martin Hällberg.

To generate the nanobodies, alpacas and llamas – animals whose immune systems naturally produce both antibodies and nanobodies – were vaccinated with the spike protein of the coronavirus. Among the nanobodies generated by the animals, the researchers selected the best binders. Among these, four were identified as showing an exceptional ability to block the virus’ ability to spread among human cultured cells.

The virus will have an extremely difficult time mutating extensively on that surface and at the same time being able to bind ACE2

Martin Hällberg

The research group at Karolinska Institutet then used electron cryomicroscopy (cryo-EM) to study in detail how the various nanobodies bind to the virus’ spike protein. Thanks to their structural knowledge, they were able to propose suitable protein links to bind different nanobodies together into combinations relevant for research, as well as provide a possible explanation for the mechanism of how the antibodies neutralise the virus. “My ‘favourite’ is the nanobody from the llama,” Martin Hällberg says. “It binds directly over the surface where the virus binds the host cell receptor ACE2, and the nanobody also shares a large majority of the amino acids critical for binding with ACE2. What this means is that the virus will have an extremely difficult time mutating extensively on that surface and at the same time being able to bind ACE2. A variant where this llama antibody is linked to one of the antibodies from alpaca was a fox trap that the virus never managed to get out of in our experiments.”

Recommended article


Coronavirus disease research

Seeking a COVID-19 antidote: the potential of ACE2

As coronavirus disease COVID-19 continues to jet and alight invisibly around the globe, scientists now report that the virus has mutated to become two strains: the older ‘S-type’ appears milder and less infectious, while the later-emerging ‘L-type’, is more aggressive, spreads more quickly, and currently accounts for about 70 per cent of cases. Worldwide, medical researchers are exploring…

The researchers now hope that their nanobodies will be able to be developed into a drug treatment as a complement to a vaccination against Covid-19. “It possibly could be used clinically for those already ill, or for prevention for individuals who for one reason or another cannot be vaccinated, or who have a weakened immune system, and therefore may not form a sufficiently strong immune response after a vaccination,” explains Martin Hällberg.

Dioscure Therapeutics, a spin-off company from the University of Bonn, will be conducting further testing of the nanobodies in clinical trials. The researchers at Karolinska Institutet will make attempts to improve the binding further by changing individual building blocks in the nanobodies.

Source: Karolinska Institutet


Read all latest stories

Related articles


Mechanical inactivation

'Nano traps' to lock up and neutralize viruses

To date, there are no effective antidotes against most virus infections. An interdisciplinary research team at the Technical University of Munich (TUM) has now developed a new approach: they engulf…


Coronavirus inhibition

Highly potent antibody against SARS-CoV-2 discovered

Scientists at Lausanne University Hospital (CHUV) and École polytechnique fédérale de Lausanne (EPFL) have discovered a highly potent monoclonal antibody that targets the SARS-CoV-2 spike protein…


Genomic tracking

Retracing the Covid-19 pandemic in England

The Covid-19 crisis that gripped England between September 2020 and June 2021 can be thought of as a series of overlapping epidemics, rather than a single event, say researchers at the Wellcome…

Related products

Subscribe to Newsletter