Study

Relaxing proteins may prevent dysfunction and disease

For many years, we thought that all proteins must fold into complicated shapes to fulfill their functions, looking like thousands of sets of custom-tailored locks and keys. But over the past two decades, scientists have begun to realize other proteins—including those involved in many essential cellular functions—remain fully or partially unfolded for parts of their lives.

Credit: Micayla Bowman

Out of this realization has come a debate: how such proteins spend their time when floating in the cell. Since they’re not folded into their precise shapes, do they contract into balls, or remain expanded, like a rope? Different methods have yielded different results. Scattering using X-rays suggested they remained expanded, but fluorescent methods observed the opposite behavior. The answer would affect how we envision the movement of a protein through its life—essential for understanding how proteins fold, what goes wrong during disorders and disease and how to model their behavior.

Photo
A new study suggests many proteins remain expanded in the cell, rather than contracting into tight folded shapes.
Source: Micayla Bowman

A team of University of Chicago and Notre Dame researchers used simulations and X-rays to tackle the question. The results, published Oct. 13 in Science, conclude that these proteins remain unfolded and expanded as they float loose in the cytoplasm of a cell.

“What we need to determine is how ‘sticky’ they are,” said co-author Prof. Tobin Sosnick, chair of the Department of Biochemistry & Molecular Biology, director of the Graduate Program in Biophysical Sciences and member of both the Computation Institute and the Institute for Molecular Engineering. “For survival, you want a protein to “stick” only in the right conformation, and with the right other pieces or partners at the right times.” This stickiness is determined by the protein’s chemistry and physics.

The results are very clear, but contradict the current consensus

Tobin Sosnick

Sosnick’s team came up with a way to analyze a single X-ray measurement to determine stickiness, finding that the proteins are generally much less sticky than expected. Their chemistry is set up prefer to interact with water, rather than itself or other proteins.

“The results are very clear, but contradict the current consensus,” Sosnick said. “It’s possible that proteins can avoid unwanted interactions by being expanded.” This reduces the chances of them sticking to other proteins by accident, causing dysfunction or disease.

13.10.2017

More on the subject:
Read all latest stories

Related articles

Photo

Zooming in

Breast cancer map reveals how mutations shape the tumour landscape

Scientists have created one of the most detailed maps of breast cancer ever achieved, revealing how genetic changes shape the physical tumour landscape. An international team of scientists, brought…

Photo

Updating treatments

Sugar and fat can make cancer cells harder to kill

In their quest to find new and better methods to make cancer cells more susceptible to treatment, Karin Lindkvist and her research group at Lund University in Sweden are looking into the world of…

Photo

"Immune escape"

Cancer camouflage: how our immune system is duped

T cells play a huge role in our immune system's fight against modified cells in the body that can develop into cancer. Phagocytes and B cells identify changes in these cells and activate the T cells,…

Related products

Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Sarstedt – Cell Culture Products

Specialties

Sarstedt – Cell Culture Products

SARSTEDT AG & CO. KG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH