News • Study

Relaxing proteins may prevent dysfunction and disease

For many years, we thought that all proteins must fold into complicated shapes to fulfill their functions, looking like thousands of sets of custom-tailored locks and keys. But over the past two decades, scientists have begun to realize other proteins—including those involved in many essential cellular functions—remain fully or partially unfolded for parts of their lives.

Credit: Micayla Bowman

Out of this realization has come a debate: how such proteins spend their time when floating in the cell. Since they’re not folded into their precise shapes, do they contract into balls, or remain expanded, like a rope? Different methods have yielded different results. Scattering using X-rays suggested they remained expanded, but fluorescent methods observed the opposite behavior. The answer would affect how we envision the movement of a protein through its life—essential for understanding how proteins fold, what goes wrong during disorders and disease and how to model their behavior.

Photo
A new study suggests many proteins remain expanded in the cell, rather than contracting into tight folded shapes.
Source: Micayla Bowman

A team of University of Chicago and Notre Dame researchers used simulations and X-rays to tackle the question. The results, published Oct. 13 in Science, conclude that these proteins remain unfolded and expanded as they float loose in the cytoplasm of a cell.

“What we need to determine is how ‘sticky’ they are,” said co-author Prof. Tobin Sosnick, chair of the Department of Biochemistry & Molecular Biology, director of the Graduate Program in Biophysical Sciences and member of both the Computation Institute and the Institute for Molecular Engineering. “For survival, you want a protein to “stick” only in the right conformation, and with the right other pieces or partners at the right times.” This stickiness is determined by the protein’s chemistry and physics.

The results are very clear, but contradict the current consensus

Tobin Sosnick

Sosnick’s team came up with a way to analyze a single X-ray measurement to determine stickiness, finding that the proteins are generally much less sticky than expected. Their chemistry is set up prefer to interact with water, rather than itself or other proteins.

“The results are very clear, but contradict the current consensus,” Sosnick said. “It’s possible that proteins can avoid unwanted interactions by being expanded.” This reduces the chances of them sticking to other proteins by accident, causing dysfunction or disease.

13.10.2017

More on the subject:
Read all latest stories

Related articles

Photo

News • Immune systems timulation

Using senescent cells as anti-cancer vaccines

Researchers from Barcelona report that vaccination with senescent cells shows promise in experimental models of melanoma and pancreatic cancer.

Photo

News • Filopodia research

'Sticky fingers' in cells keep breast cancer contained

Researchers in Finland have identified that finger-like cellular extensions called filopodia contribute to building a barrier surrounding breast tumours.

Photo

News • Diagnostic imaging reseach

How contrast agents disperse inside cells

A research team has investigated how contrast agents disperse inside cells. This could improve the assessment and further development of these agents and contribute to future medical diagnostics.

Related products

Fujifilm Wako – Autokit CH50 Assay

Immunoassays

Fujifilm Wako – Autokit CH50 Assay

FUJIFILM Wako Chemicals Europe GmbH
Mindray – BC-6200 / 6000 Auto Hematology Analyzer

Blood Cell Couner

Mindray – BC-6200 / 6000 Auto Hematology Analyzer

Shenzhen Mindray Bio-Medical Electronics Co., Ltd
Mindray – BC-6800Plus Auto Hematology Analyzer

Blood Cell Couner

Mindray – BC-6800Plus Auto Hematology Analyzer

Shenzhen Mindray Bio-Medical Electronics Co., Ltd
MolGen – PurePrep 96

Extraction

MolGen – PurePrep 96

MolGen
Subscribe to Newsletter