The novel mechanism of cancer formation discovered by Dr Polly Leilei Chen...
The novel mechanism of cancer formation discovered by Dr Polly Leilei Chen (right), Dr Song Yangyang (left) and their team could lead to more effective treatment

Image source: NUS

RNA editing

New mechanism of cancer formation discovered

A team of scientists at the National University of Singapore (NUS) led by Dr Polly Leilei Chen from the Cancer Science Institute of Singapore and Yong Loo Lin School of Medicine has discovered a previously unknown mechanism of cancer formation, the understanding of which may lead to more effective treatment.

Their findings concern a process called RNA editing. The DNA code of a gene gets transcribed into an intermediate code known as RNA, before being translated into a protein molecule that plays a particular role in the cell. Sometimes, the RNA gets modified, or edited, before the final translation, yielding a different protein product. RNA editing is a phenomenon that gives the cell finer control over its proteins.

Their findings were published in the Journal of Hepatology.

With this new knowledge, we can now look into how A-to-I RNA editing contributes to cancer by altering their protein sequences and how we can restore cancer-suppressing processes mediated by RNA editing in the cell

Polly Leilei Chen

The research team examined the RNA encoding a protein called “coatomer subunit α” (COPA), which influences the development of cancers of the liver, esophagus, stomach and breast, and examined whether RNA transcribed from the COPA gene was edited or altered in clinical samples of cancerous liver tissues. They discovered that any given cell contains a mix of both edited and unedited versions of COPA. When the unedited or “wild type” COPA is predominant, the cell is more likely to become cancerous. Conversely, when edited COPA is predominant, it is thought to suppress a convoluted molecular signalling network called the PI3K/AKT/mTOR signalling pathway. When this pathway gets out of control, it triggers excessive cell multiplication which can lead to cancer.

The researchers are now trying to find a way to boost the natural RNA editing mechanisms in the cancerous cell to tip the balance in favour of the edited version of COPA, thereby suppressing the cancer. “With this new knowledge, we can now look into how A-to-I RNA editing contributes to cancer by altering their protein sequences and how we can restore cancer-suppressing processes mediated by RNA editing in the cell,” said Dr Chen.


Source: National University of Singapore

16.01.2021

Read all latest stories

Related articles

Photo

Cytosponge research

‘Pill on a string’ test could transform oesophageal cancer diagnosis

A ‘pill on a string’ test can identify ten times more people with Barrett’s oesophagus than the usual GP route, a new study shows. The test, which can be carried out by a nurse in a GP surgery,…

Photo

Pathological regression of lymph nodes

Improved grading system to predict esophageal cancer survival

A group of researchers led by Osaka University established a new pathological grading system to evaluate the therapeutic effect of neoadjuvant chemotherapy (NAC) for metastatic lymph nodes (LNs)…

Photo

Gastric squamous-columnar junction cancer

The role of stem cells in deadly gastric SCJ cancer

A study led by scientists from Cornell University provides important new insights into a common and deadly type of gastric cancer. Incidence of this cancer, called gastric squamous-columnar junction…

Related products

Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH
Subscribe to Newsletter