Inert inorganic particles reach selected tumour cells

Upon X-ray radiation (hν(X)), NanoXray particles emit electrons (e-) that in...
Upon X-ray radiation (hν(X)), NanoXray particles emit electrons (e-) that in turn lead to the formation of radicals (R°) that damage DNA molecules and other cell components

Radiotherapy is a treatment of choice for six million (60%) of cancer patients annually. However, it has a crucial deficit: its therapeutic window is limited. The reason is simple. While radiotherapy is very efficient in killing cancer cells, it inevitably also damages surrounding healthy tissue. Therefore, in many cases doctors need to restrict the dose - a compromise that prevents the effective eradication of tumour cells.

For decades, radiotherapists have not been able to greatly improve the situation. They believe that even a 5-20% increase in the therapeutic window could drastically change clinical output. French nanomedicine specialist Nanobiotix has developed NanoXray, a formulation of inert, inorganic particles with a size of 50nm that can be delivered selectively to tumour cells. Consisting of hafnium oxide, they react to a standard radiation dose by emitting a shower of electrons. This is the identical physical mode of action of radiotherapy – except that hafnium oxide emits far more electrons than a water molecule, the usual target, and thereby locally increases the effective dose by a factor of nine. The radiotherapy dose in the surrounding healthy tissue is unaffected because it is not loaded with nanoparticles.

NanoXray can be administered without the need to invest in novel devices; it does not even require changes in standard radiation procedures. NanoXray is applied either via intra-tumoural injection (NBTXR3) or by deposition of a gel-formulation in the tumour bed during surgical resection (NBTX-TOPO). A formulation for intravenous injection (NBTXIV) is also in development.

EU regulated as a medical device, NBTXR3 is in a Phase I study in soft tissue sarcoma patients. Preliminary results are expected at the end of 2012.


More on the subject:
Read all latest stories

Related articles


News • Photoprintable radiopaque hydrogels

Improved materials for reconstructive and plastic surgery

Researchers present new 3D-printable materials that can be easily monitored using X-ray or CT imaging. This has great potential to expand the possibilities of reconstructive and plastic surgery.


News • New antibodies discovered

Researchers snake toward a universal antivenom

Scientists have developed an antibody that can block the effects of lethal toxins in the venoms of a wide variety of snakes found throughout Africa, Asia and Australia.


News • Opportunity for new osteoarthritis treatments

Cartilage regeneration: From the nose to the knee

Patients suffering from cartilage defects in the knee may benefit from a new method in development: Using cartilage from the nose, researchers grow a tailor-made implant.

Related products

Subscribe to Newsletter